A formal study of injection vulnerabilities and some tools it will enable J

Pierre-Francois Gimenez, CentraleSupelec
Joint work with Eric Alata, LAAS-CNRS

SoSySec, February 19, 2021

¢y Opening example

CentraleSupélec

Question time
Complete the following sentence:

Paris is to __ what London is to .

Injections study Introduction SoSySec, February 19, 2021 2 /32

¢ Opening example

CentraleSupélec

Question time
Complete the following sentence:

Paris is to __ what London is to .

First kind of answer
= France and England
= Leads to: "Paris is to France what London is to England."
= Proposed by those who understand the intent behind the question

SoSySec, February 19, 2021

Injections study Introduction

¢ Opening example

CentraleSupélec

Question time
Complete the following sentence:

Paris is to __ what London is to .

First kind of answer
= France and England
= Leads to: "Paris is to France what London is to England."
= Proposed by those who understand the intent behind the question

Second kind of answer
= 0o crowded for you and that’s and me
= Leads to: "Paris is too crowded for you and that's what London is to me."

= Proposed by those who know about injection attacks

SoSySec, February 19, 2021

Injections study Introduction

¢ What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence J

Injections stud Introduction SoSySec, February 19, 2021 3/32
) y /

¢ What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence J

"The Voyage of
Doctor Dolittle is
canceled"

Injections study Introduction SoSySec, February 19, 2021 3/32

What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

€) mon

&' BAISER

"A mon Jules Joffrin baiser"
"Jules Joffrin" is a Parisian subway station.
The whole sentence means "l give a kiss to
my boyfriend"

"The Voyage of
Doctor Dolittle is
canceled"

Introduction SoSySec, February 19, 2021 3/32

Injections study

¢ And in software engineering?

CentraleSupélec

SQL injection are well-known
A developer writes an authentication query:
SELECT id FROM user WHERE login=’__.’ AND password=’.__’
If the user input is admin and > OR 1=1-- it leads to:
SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted!

Injections study Introduction SoSySec, February 19, 2021

¢ And in software engineering?

CentraleSupélec

SQL injection are well-known
A developer writes an authentication query:
SELECT id FROM user WHERE login=’__.’ AND password=’.__’
If the user input is admin and > OR 1=1-- it leads to:
SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted!

Injection-based attacks concern not only SQL. ..
= OS commands: Windows command line, bash
= Interpreted languages: JavaScript, python
= Formats: JSON, XML
= Protocols: SMTP, LDAP
= Markup languages: HTML, CSS

Injections study Introduction SoSySec, February 19, 2021

¢ What systems can be vulnerable?

Many systems process received instructions
= A browser receives and displays a page and executes scripts
= A database receives a query and applies it on its data

= A robot executes an order received though a network protocol

Injection vulnerabities
= These instructions may be structured using a query language, a protocol, etc.

= When instructions depend on user input, they are generally built by concatenation: it can
lead to injection vulnerabilities
= Injections are very serious threats :

= #1 threat to web services according to OWASP
= Appears 3 times in CWE Top 25 Most Dangerous Software Errors

Injections study Introduction SoSySec, February 19, 2021 5 /32

¢ What is this presentation about?

A formal approach
= Use the theory of formal language
Formally define what is an injection attack

= Propose two security properties and analyze their decidability

Highlight some vulnerable language patterns

A few tools derived from the formal approach
= A secure query language, a fuzzer and an intrusion detection system

= The objective of a provisional ANR project proposal

Injections study Introduction SoSySec, February 19, 2021

CentraleSupélec

@ Introduction

@® Background on formal language theory
© Formalization and security properties
© Results and implications

© Ongoing and future projects

Injections study Introduction

SoSySec, February 19, 2021

7/ 32

¢ Formal language and grammar

The theory of formal languages studies the syntactic aspects of languages

Formal language

A formal language L is a set of valid strings called "words". Such string can be a SQL query, a
C program, a network packet, etc.

Formal grammar

A grammar G describes a language L(G) through a set of rewriting rules. If one can rewrite a
starting symbol into a word by applying rules, then this word is in the language described by
that grammar.

Each formal grammar describes one language, but each language can be described by several
grammars: L(G)=L(G")#A G=G

Injections study Background on formal language theory SoSySec, February 19, 2021 8 /32

Grammar and derivation

SentraleSupélec

Starting symbol: <Query>

<Query> — SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> — <Attribute> | <Attribute> , <SelList>

<FromList> — <Table> | <Table> , <FromList>

<Condition> — <Condition> AND <Condition> | <Attribute> IN (<Query>)

| <Attribute> = <Attribute>

Injections study Background on formal language theory SoSySec, February 19, 2021 9 /32

¢ Grammar and derivation

Starting symbol: <Query>

<Query> — SELECT <SelList> FROM <FromList> WHERE <Condition>

<SelList> — <Attribute> | <Attribute> , <SelList>

<FromList> — <Table> | <Table> , <FromList>

<Condition> — <Condition> AND <Condition> | <Attribute> IN (<Query>)
| <Attribute> = <Attribute>

Derivation example

<Query> = SELECT <SelList> FROM <FromList> WHERE <Condition>

= SELECT <Attribute> FROM <FromList> WHERE <Condition>

= SELECT <Attribute> FROM <Table> WHERE < Condition>

= SELECT <Attribute> FROM <Table> WHERE <Attribute> = <Attribute>

We can also write directly:
<Query> =* SELECT <Attribute> FROM <Table> WHERE <Attribute> =
<Attribute>

Injections study Background on formal language theory SoSySec, February 19, 2021

Derivation tree

Derivation trees (= parse tree, concrete syntax tree) are another way of representing the set of

rules used to derive a word

(SELECT) (<SelList>] (FROM) (<FromList>] (WHERE](<Condition>)

<Attribute> (<Table>) (<Attribute>) (=) (<Attribute>

Injections study Background on formal language theory SoSySec, February 19, 2021 10 / 32

. Grammar and language classes

CentraleSupélec

Language classes

We can regroup languages into classes depending on their properties. Simpler languages are
easier to parse but have less expressive power.

Grammar classes
For each language class, there is generally a grammar class with some restrictions about the
form of the rules so these grammars generate that language class.

Informal presentation of some classical classes

= Regular language: all the languages that can be expressed with regular expression or
finite-state automata

= Deterministic context-free language: languages that can be parsed in linear time

= Context-free language: languages whose words have parse trees

Injections study Background on formal language theory SoSySec, February 19, 2021 11 / 32

CentraleSupélec

© Formalization and security properties

Injections study Formalization and security properties SoSySec, February 19, 20!

& Definitions

Query
A query is a complete command. For example: SQL query, JSON file, a network message, etc.

Template

A fill-in-the-blanks template t is the set of strings written by the developer. Example:
"SELECT __ FROM DB WHERE PRICE>___ AND ID=22"

Injection
A user input w is the set of strings that is injected in a template. Example: "NUMBER" and
"23.99". Injection may be legitimate or malicious. In red

For simplicity sake, examples in this talk will be restricted to template with a single blank

Injections study Formalization and security properties SoSySec, February 19, 2021 13 /32

¢y How to modelize a malicious injection?
Intent
= We assume that the developer has an intent in mind when they writes the template.

= We modelize the intent with a symbol or a sequence of symbol denoted ¢ (for example:
< Condition> or <Comparator> <Number>)

= An injection w is legitimate if . =" w
= Languages and grammars don't deal with semantics... but compilers/interpreters do and
rely on parsers, and parsers are based on grammars.

= |t depends on the grammar and not only on the language!

Example
= Template: SELECT <Attribute> FROM <Table> WHERE <Attribute> = ___
= Intent: <Attribute>
= Malicious injection: <Attribute> AND <Attribute>=<Attribute>

Injections study Formalization and security properties SoSySec, February 19, 2021 14 / 32

Intent-equivalence

CentraleSupélec

Question
In which condition a template (p,s) can only accept legitimate injections?

Definitions
= First, we define the set of possible injections in this template :
F(L,(p,s)) ={w | pws is a word of L}
= Then, we define the set of injections that are expected by the developer :
E(G,))={w|t=*w})

Intent-equivalence
A template (p,s) is said to be intent-equivalent to ¢ if

S="ps and F(L(G),(p,s)) = E(G,.)

i.e. if the intent is possible in that place and if the possible injections are exactly the expected
Formalization and security properties SoSySec, February 19, 2021 15 / 32

Injections study

¢ Intent-security

CentraleSupélec

Question
In which condition a grammar can only generate intent-equivalent templates?

Definitions
= Let us define the set of injection of a whole grammar for a particular intent :
I(GaL) = U{(p,s)|$:>*pcs} F(L(G)a (p,S))
= The set of unexpected injections is the set of injections that may appear in a template
and that is not explained by the intent : 6/(G,.) = I(G,.) — E(G,¢)

Intent-security

A grammar is intent-secure for the intent ¢ if 0/(G,.) = @.

Example

There is a grammar G such as L(G) = {a"cdb" | n > 0} that is intent-secure for all symbols

v

Injections study Formalization and security properties SoSySec, February 19, 2021 16 / 32

e Inherently intent-(un)secure languages

The definitions of intent-equivalence and intent-security depend on a grammar

Inherently intent-secure languages
= A language whose grammars are all intent-secure
= They don't exist: we can always craft an insecure grammar

Inherently intent-insecure languages
= A language whose no grammar is intent-secure
= SELECT * FROM product WHERE price = __
Here, the intent can be a number. We can inject 123 OR availability="true". Since
this injection works for all grammars, SQL is inherently intent-insecure.

Injections study Formalization and security properties SoSySec, February 19, 2021 17 / 32

CentraleSupélec

© Results and implications

Injections study Results and implications SoSySec, February 19, 20!

¢ Intent-equivalence

> 1 blanks > 1 blanks > 1 blanks
Le ()™ ce(A)™ | ee(TH)™

= Intent-equivalence is decidable for
regular and some deterministic
grammars VPG Decidable Decidable Decidable

= |t is decidable for context-free grammars
for terminal (non-derivable) intents, but
undecidable with any intent. LR(K) || Decidable 2 Decidable

REGG Decidable Decidable Decidable

LR(0) Decidable Decidable Decidable

CFG Undecidable | Undecidable | Decidable

Injections study Results and implications SoSySec, February 19, 2021 19 / 32

¢ Injection characterization

= A language is regular iff it is the set of unexpected injections in a regular grammar
= Even simple grammars (LL(1)) can have complex (context-sensitive) injections

= A language can be described by a grammar iff it is the set of unexpected injections in a
deterministic grammar

REGL = c) <
§I(REGG) ’| CFL ’

RE =
SZ(LR(0)) =
5Z(CFG)

SZ(LL(1))

Injections study Results and implications SoSySec, February 19, 2021 20 / 32

¢ Intent-security

One blank > 2 blanks

) Finite, |L| >2 Decidable Decidable
= All infinite regular languages (and
languages that include infinite regular REGG with infinite False False
sublanguages) are inherently language

intent-insecure G o infinit
rammars wi intinite
False False

= For two blanks, all context-free

regular sublanguage
languages are inherently intent-insecure

LR(0) with infinite
language

= |t is undecidable for one blank for
deterministic grammars

Undecidable False

CFG with infinite
language

Undecidable False

Injections study Results and implications SoSySec, February 19, 2021

¢ Intent-security

One blank > 2 blanks

) Finite, |L| >2 Decidable Decidable
= All infinite regular languages (and
languages that include infinite regular REGG with infinite False False
sublanguages) are inherently language

intent-insecure G o infinit
rammars wi intinite
False False

= For two blanks, all context-free

regular sublanguage
languages are inherently intent-insecure

LR(0) with infinite
language

= |t is undecidable for one blank for
deterministic grammars

Undecidable False

CFG with infinite
language

Undecidable False

Injections study Results and implications SoSySec, February 19, 2021

¢ Focus on infinite regular languages

CentraleSupélec

All infinite regular languages (and languages that include infinite regular sublanguages) are
inherently intent-insecure

Idea behind the impossibility
= The formal proof is based on the pumping lemma, but can be explained in a different way.

= The only way to have an infinite regular expression is to have a repetition with *. For
example, in SQL: SELECT (<Attribute> ,)* <Attribute> FROM <Table> is an infinite
regular expression.

= In the template SELECT __ FROM <Table>, one can inject <Attribute>,
< Attribute> even if the intent is <Attribute>

Implication

It explains why so many languages are inherently intent-insecure: infinite regular patterns are
ubiquitous! Another example: (Condition OR)* Condition

Injections study Results and implications SoSySec, February 19, 2021 22 /32

Focus on infinite context-free languages

For two blanks, all context-free languages are inherently intent-insecure

Idea behind the impossibility

In infinite context-free languages, there exists A =* wy bAcw, (wy and wy may be empty)

A can be reached from the starting symbol S:
S =* pAs =* pwi bAcwas =* pwy bwi bAcw, cwss.

Let the template be: pw;__A__wss. The intents are b and c.

We can inject bw;b and cwyc and get a valid word: pwy bwi bAcwscwss. It is an
unexpected (malicious) injection

Intuitively: with a recursive structure, one can add a level to the derivation tree by
modifying both sides of the recursive structure

Injections study Results and implications SoSySec, February 19, 2021 23 /32

Focus on infinite context-free languages (cont.)

CentraleSupélec

Example

= Template: SELECT <Attribute> FROM <Table> WHERE __ IN (SELECT
<Attribute> FROM <Table>) AND <Attribute> = __
= Intents: two <Attribute>
= Malicious injection:
= <Attribute> IN (SELECT <Attribute> FROM <Table> WHERE <Attribute>
= <Attribute>)
= Completed sentence: SELECT <Attribute> FROM <Table> WHERE <Attribute> IN
(SELECT <Attribute> FROM <Table> WHERE <Attribute> IN (SELECT
<Attribute> FROM <Table>) AND <Attribute> = <Attribute>)

Implication

This pattern is ubiquitous as well: any kind of recursive structure with tags, parenthesis, etc.
This vulnerability needs blanks on both sides of the recursive structure.

Injections study Results and implications SoSySec, February 19, 2021 24 / 32

Implications

The problem does not stem from bad development practice but from the languages
themselves

Template analysis (intent-equivalence) is possible for deterministic grammars but not for
more complex grammars, but may require asking or guessing the developer's intent

Implications on language design

It is possible (but not easy) to have intent-secure grammars

Simpler languages are not more secure. On the contrary!

Regular patterns with * should be avoided if they may contain a user input

One should be vigilant with recursive structure if blanks can appear on both sides
More complex, context-sensitive languages could be safe with two blanks or more

Finite language are probably the most secure

Injections study Results and implications SoSySec, February 19, 2021 25 /32

CentraleSupélec

© Ongoing and future projects

Injections study Ongoing and future projects SoSySec, February 19, 20!

¢ How to design an intent-secure language

Problem
= Intent-security is either false or undecidable for most grammar classes

= Could we find sufficient conditions for a grammar to be intent-secure?

= What would such language look like?

Sufficient conditions and necessary conditions
We found various sufficient conditions and necessary conditions. For example:
= An intent-secure grammar cannot have rules in the form A — aBf and A — «df
(because B could be replaced with ¢)

= A grammar that is LL(1), RR(1), whose each expected injections set is prefix-free and
suffix-free, and with no rule A — B, is intent-secure for one blank and an intent of length
1.

Injections study Ongoing and future projects SoSySec, February 19, 2021 27 / 32

¢ How to design an intent-secure language

Proof of concept with SQL

We developed a proof of concept named SeQrel (secure-L) that is intent-secure for one blank
and an intent of length 1. Compare for example:

= SQL: SELECT __ AS Orders, Min(Price) FROM Customers
= SeQrel: SELECT < AS[Orders,. .], [MIN[(Price)]]> FROM Customers

Ongoing work
= This language is context-free so it is not intent-secure with two blanks — we need to
extend our definitions to context-sensitive languages
= |In real-world applications, no need to have intent-security for all symbols

= We are looking for an actual case study: if you need to develop a DSL (domain-specific
language) that would benefit of being intent-secure, contact me!

Injections study Ongoing and future projects SoSySec, February 19, 2021 28 / 32

A black-box injection fuzzer

CentraleSupélec

Fuzzers
= A fuzzer is a testing tool that sends user input to a system to find its vulnerabilities

= Only a few injection-focused fuzzers, like sqlmap

Idea
= When the grammar and the template is known, it is easy to compute the set of injections

= In a black-box setting, the template could be inferred from the system answer

Poirot
= A universal black-box injection fuzzer that analyzes which injections are syntactically

correct to infer the template (with any grammar)
= Based on an A* search, guided by an heuristic — theoretical guarantees
= Experiments with SQL, LDAP, XML, Bash and SMTP — still some performance issues

Injections study Ongoing and future projects SoSySec, February 19, 2021 29 /32

¢ Intrusion detection and prevention system

CentraleSupélec

Injection IDS
= Injection IDS exist but are rarely used because of their complexity
= They require source code or library modification, developer input, etc.
= We work on an IDS with minimal configuration and interaction: "plug and play"

= |n particular: we don’t assume access to the source code and we don't taint the template
v

Idea
= The IDS is a proxy placed between the back-end server and the database
= The difficulty is to identify the injection inside the query
= In development environment, the templates and their intents are inferred from queries

= |In production environment, the query are verified with the learned templates. We can
raise an alert or cancel the query if needed

Injections study Ongoing and future projects SoSySec, February 19, 2021 30 /32

Provisional ANR project proposal

CentraleSupélec

Objective: offer a methodological and technical toolbox to prevent, identify and mitigate
injection threat in vulnerable systems

Main focuses
= Broaden the range of injection logic (insertion, overwrite, mixed)
= Take advantage of more elaborate theoretical constraints on interpreted languages
(context-sensitive languages)
= |nvestigate possibility to take advantage of interpreter operational semantics to assess
threats and mitigate them
= Investigate chained injection problems (controllability of the final interpreter)

Current team

= Pierre-Francois Gimenez, CentraleSupelec = Benoit Morgan, IRIT
= Eric Alata, LAAS-CNRS = Thomas Robert, Télécom Paris
Ongoing and future projects SoSySec, February 19, 2021 31 /32

Injections study

& Conclusion

= Injection vulnerabilities are not specific to SQL but are present is all kind of languages
and systems that handle user input within structured data

= Injection vulnerabilities do not stem from poor programming skills but from deep flaws in
ubiquitous patterns, such as infinite regular expression and recursive bracket-based
expression

= New tools are possible to detect, remove or limit these vulnerabilities

= Contact us! We are looking for industrial partnerships and research
collaborations. pierre-francois.gimenez@centralesupelec.fr

And thank you for your attention!

Injections study Ongoing and future projects SoSySec, February 19, 2021 32/32

mailto:pierre-francois.gimenez@centralesupelec.fr

	Introduction
	Background on formal language theory
	Formalization and security properties
	Results and implications
	Ongoing and future projects

