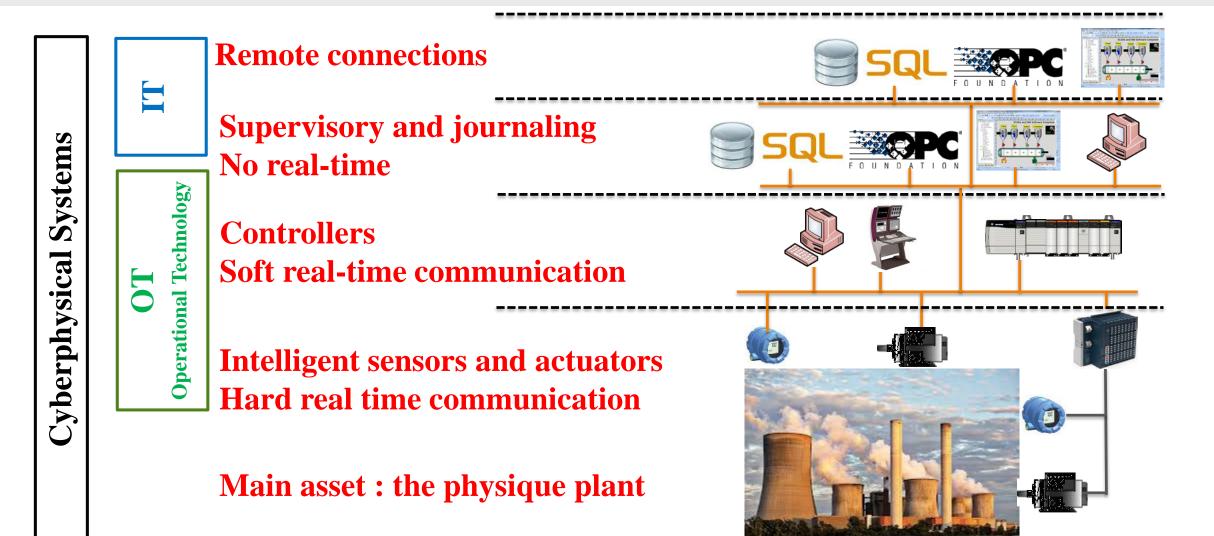


Cybersecurity of industrial systems. Open problems and some ideas.

Stéphane Mocanu, Laboratoire d'Informatique de Grenoble/INRIA CTRL-A

stephane.mocanu@inria.fr



A cross-disciplinary viewpoint

- process
- control system
- computer science

INDUSTRIAL CONTROL SYSTEMS (SCADA)

SOME DEFINITIONS AND FACTS

Cybersecurity triad revisited

- Availability is paramount (keep running under attack)
- ► Non-repudiation may be crucial (emergency stop)
- ► Real-time properties are important
- ► Reaction time to attacks is very short
- Attacks targets the physical process
 - Stuxnet, BlackEnergy, Industroyer, …...
- Behavioral classification
 - Event-based : sequential systems (aka Manufacturing) PLC controlled
 - All manufacturing systems
 - Time-based : continuous systems (aka Process)
 - Feedback control based processes
 - Electrical transport and distribution (hybrid)

THREATS 2019

Primary attacks (Source BSI-CS005E Top 10 Threats and Countermeasures 2019)

Top 10 Threats	Trend since 2016
Infiltration of Malware via Removable Media and External Hardware	0
Malware Infection via Internet and Intranet	0
Human Error and Sabotage	0
Compromising of Extranet and Cloud Components	0
Social Engineering and Phishing	0
(D)Dos Attacks	0
Control Components Connected to the Internet	\bigcirc
Intrusion via Remote Access	\bigcirc
Technical Malfunctions and Force Majeure	0
Compromising of Smartphones in the Production Environment	\bigcirc

Secondary attacks

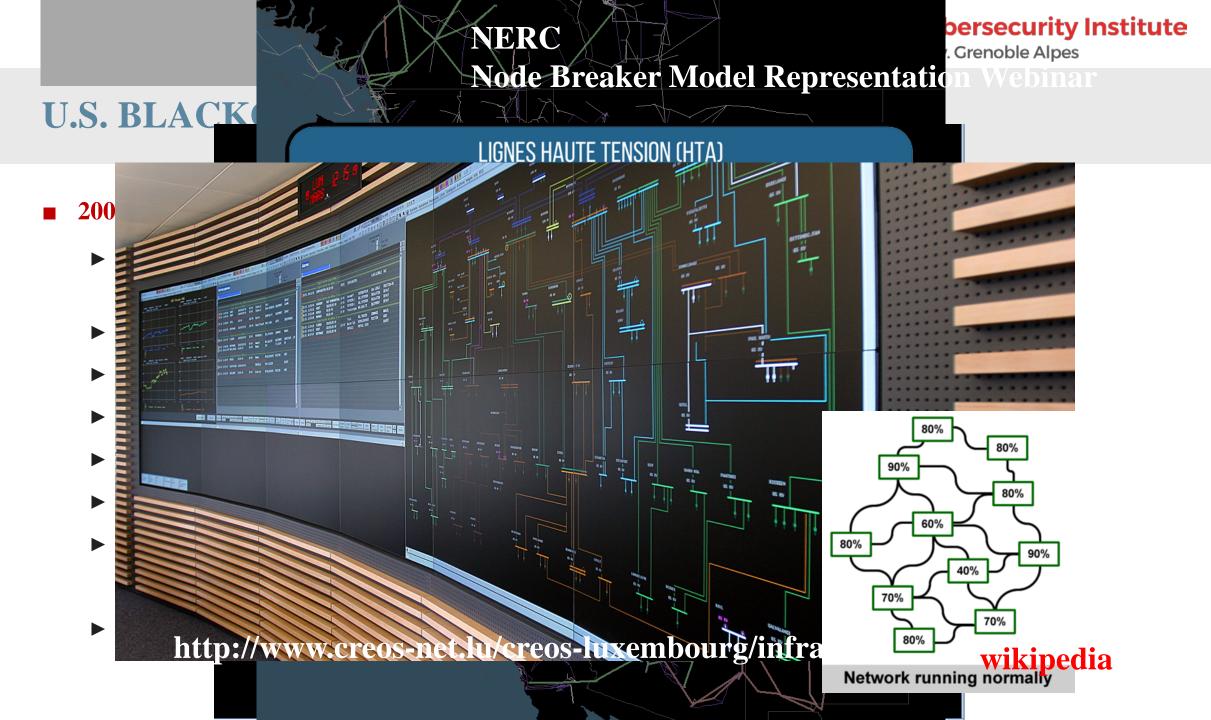
- Privilege escalation
- Unauthorized access to internal systems
- Manipulation of fieldbus communication
- Manipulation of network components

Important remark

Recent mediatic events are Big Game Hunting

- Norsk Hydro
- Southwire
- Altran
- CHU Rouen

- Bouygues Construction 60% RDP attacks RAAS is today golden mine Source ANSSI CERTFR-2020-CTI-001

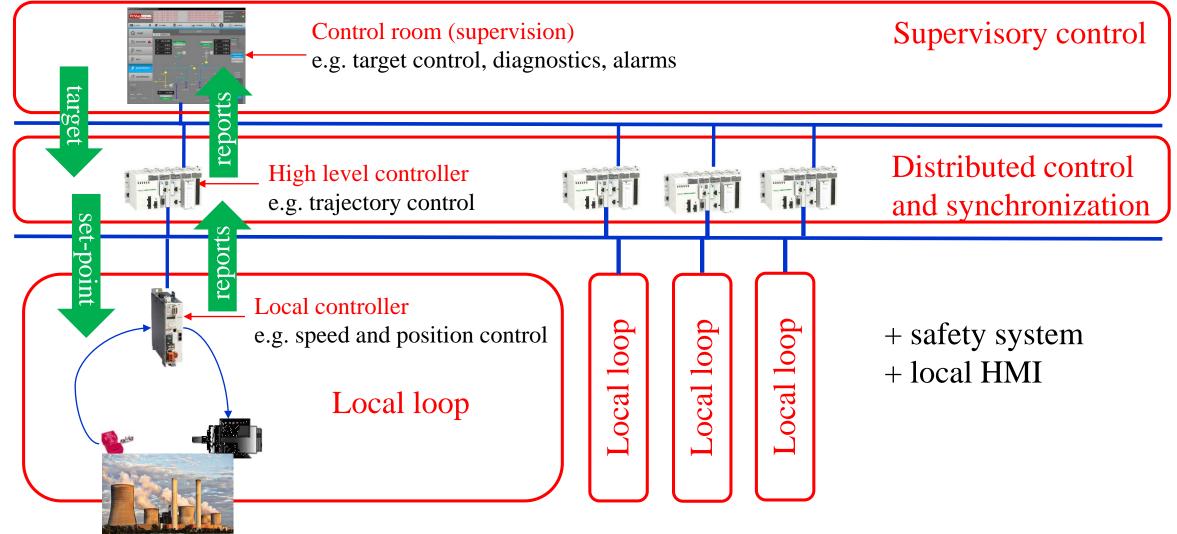

BEYOND RANSOMWARE ATTACKS

Process oriented attacks

- ► Malicious controls sent to the process (actuators) using legal frames
- ► Injection of false data sensors using legal frames
- Exploitation of IT/OT and physical process vulnerabilities
- Leads to
 - Loss of view
 - Loss of control
 - Physical process damage

Proof of concept

- "Aurora vulnerability" (thunderbolt-like effect attack) Idaho National Laboratory
 - Current spikes on the secondary circuit of a generator, faster that the protections relay timing
- Stuxnet
- Blackout 2003


BLACKOUT 2003

- **Starting event : (accidental) false sensor data injection**
- **Exploits cyber et physical system vulnerabilities**
- Loss of view (false supervisory view)
- Loss of control
- Physical system damage
- Human causalities (collateral)

No protocol syntax or semantics violation

THE SYSTEM APPROACH

SYSTEM APPROACH

- Everything, including communication system is part of the control function
 - ► Communication protocols are control oriented
- There is strong interdependence between control elements
 - Some control functions are distributed
- Security deployment has to be global
 - System oriented not global oriented
- The final target of the control function is the physical process integrity
 - Physical process model has to be taken into account

LAST DECADE TECHNICAL ADVANCEMENT

- Lots of ICS cybersecurity standards (IEC 61443, IEC 62351, etc)
- Improved device security
 - Signed firmwares
 - Some secured communication protocols
 - Logging systems
- Device and system access control
 - ► RBAC
- - Flow inspection based
- Industrial protocols support in firewalls
 - ► Is this realistic ?
- Data diodes

AND SOME MYTHS

Controller side

- Secured industrial communication protocols
 - ► Not interoperable
 - Initial exchanges still using unsecured Ethertype communications
- Certified PLC
 - Control devices heavily relay on time synchronization
 - ► Interoperability
- Certified SCADA
 - Support for legacy (unsecured protocols) is unavoidable

Countermeasure side

- Learn control model from (5 minutes) traffic aka "all by Al legend"
 - Transients may take hours
 - Controllers are intended to compensate perturbations
 - Abrupt changes in control values are normal

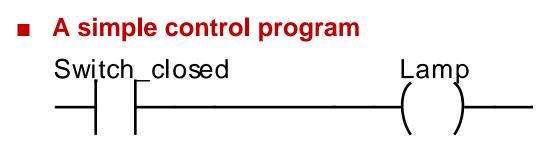
Some open problems : a personal view From controller to system

CONTROLLER : (CYBER)-SAFE PROGRAMMING LANGUAGES ?

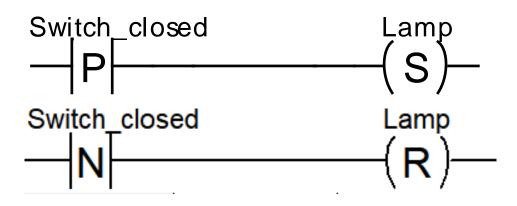
Controller periodic task

Main task period						
Read sensors	Compute new internal state	Compute controls	Write actuators	Communication	Idle	

Programming languages


► 5 normalized (IEC 61131)

- Sequential Function Chart (SFC)
- Instruction Logic (IL)
- Structured Text (ST)
- Function Block Diagram (FBD)
- Ladder (LD)

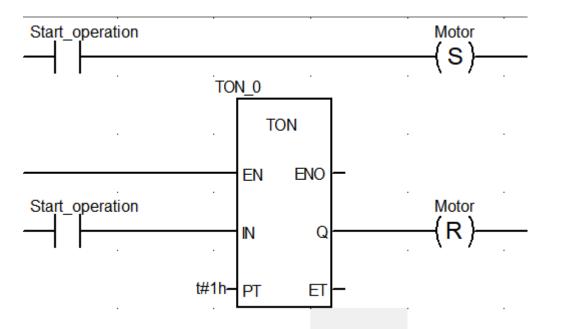

► A non-standard one : Continuous Function Chart (CFC)

HOW RESILIENT IS PLC PROGRAMMING ?

Alternative program

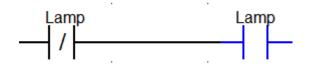
Reads : if the switch is closed activate the lamp for one cycle Implicit action : if the switch is open do not activate the lamp

Reads : on a raising edge of the switch set the lamp on (permanently)


Reads : on a falling edge of the switch set the lamp off (permanently)

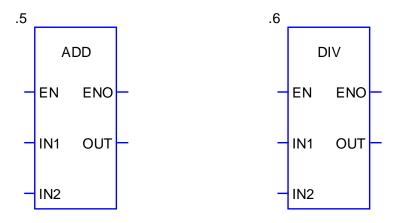
- First solution is more resilient to cyberattacks than the second one !
- Open problem : evaluate the 61131 programming languages and define cybersecure programming patterns

WRITE YOUR VARIABLES EVERY CYCLE ?


- Not always possible
- What about timed operations ?

Homework : is the following program safe ?

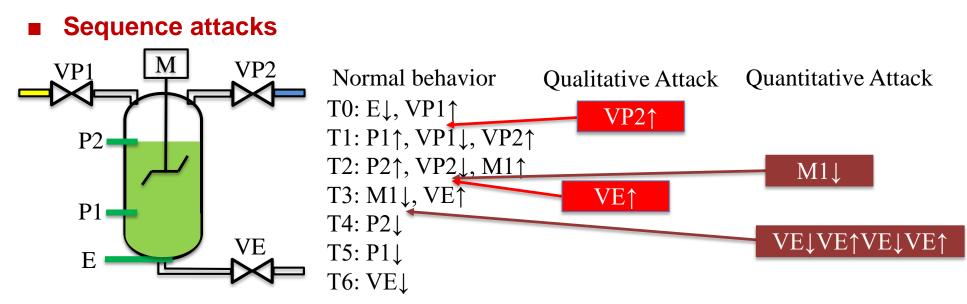
Reads : Start a motor and a timer At timeout : stop the motor


Between "Start" and TON.Q variable Motor is never refreshed !

IF IS NOT BOOLEAN THEN IS A FUNCTION !

- Traditional PLC programming languages (LD, IL) are digital logic based
- Everything else (e.g. mathematical operations) are (graphical) function calls

- Decompilation shows that parameter values are not checked but types are
 - overflow and divide by zero are possible, but apparently handled
- Open problem : tools for FB vulnerabilities check
 - Static analysis (decompilation) possible
 - Needs an execution platform for dynamic analysis
- Open problem : embedder OS vulnerabilities
 - often VxWorks (commercial version 7, PLC manufacturer version 3.10 or earlier)
 - development libraries may include old open source code (e.g. 2002 versions found in 2019)



NETWORK LEVEL : PROCESS-AWARE INTRUSION DETECTION

- Only network-based IDS are possible today
 - End devices are too loaded to support host-based IDS
- Network is part of the control function
 - Process-aware detection need to include the process model
- Open problem : cyber-physical models for intrusion detection
 - Sequential systems
 - Continuous systems
 - Control functions modeling
- Open problem : distributed detection
- Open problem : cross-domain correlation
 - Multiple attack surfaces
 - SCADA log correlation

CYBER-PHYSICAL MODELS: SEQUENTIAL SYSTEMS

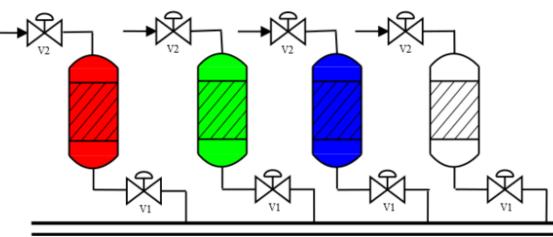
- PhD Oualid Koucham (co-supervised UGA/CentraleSupelec/DGA)
 - Security patterns LTL (Dwyer) and MTL (Konrad)
 - Runtime monitoring
 - Cross-domain correlation (monitors and network activity)

CYBER-PHYSICAL MODELS : CONTINUOUS SYSTEMS

- Which security properties
 - ► Stability
 - ► Response-time
 - Boundedness
 - Static error
 - ▶
- Which formalism
 - **STL** seems to be a good candidate
 - Monitorability of security properties
- Handle the under-sampling problem
 - ► At network level signals are sampled at a lower frequency than the controller
 - Degraded view of the dynamics
- Correlation
 - Correlate with diagnostic system (physical level system deviation detection)

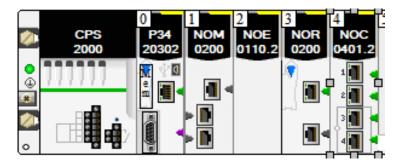
CONTROL FUNCTIONS MODELLING

- A general approach is difficult excepting for
 - ► Well known control functions (PID for instance)
 - Electrical grid protection functions


RTE Substation Protection Automation and Control Systems IEC 61850 Model

- Timed-hybrid system
- STL model or another logic ?

DISTRIBUTED DETECTION


- In large systems distributed monitoring seems more reasonable
 - Due to network segmentation
 - Large distances
 - ► A probe per local loop seems more reasonable
- Some global security properties may not be decomposed in local properties
 - "hierarchical detection" ?
- Ex. Security property : "the four tank are not simultaneously empty" cannot pe locally decomposed.

MULTIPLE ATTACK SURFACES

Modern devices are multi-network, and multi-protocol

- 4 IP network interfaces
- 2 fieldbus interfaces
- 7 communication protocols

An internal variable may be accessed by different protocols at different addresses In Modbus there are several different possible requests to write the same variable

Multinetwork-address normalization ? Cross network attack scenarios ?

SYSTEM LEVEL: DSML

- Several configuration files available on devices
 - SCL, AutomationML, OpenPLC, etc
- Flow and network cartography, device configuration and versions
- Open problem: risk analysis oriented DSML
 - Automatic data extraction and architecture model construction
 - Risk assessment
 - Network and flow segmentation
 - ► IDS probes deployment policy

The end ?