
Intrusion Detection Systems over an Encrypted
Traffic: Problem and Solutions

Sébastien Canard (Orange)

SoSySec seminar, December, 2019

Encryption is our future
� IETF HTTPbis working group that is in charge of designing the next

generation http 2.0 specification proposes that encryption be the
default way data is transferred over the open Internet

� According to a joint study by Ponemon institute, along with Thales
and Vormetric Data Security, encrypted Internet traffic has grown up
from 15% of world-wide traffic in 2005 until up to 40% in 2015. The
proportion of encrypted Internet traffic is expected to reach up to
80% by 2020

� OTTs are moving forward towards full end-to-end encryption,
including recent example such as whatsapp, Google both for
end-to-end email encryption and for Internet browsing, etc.

� European Community, through its Horizon H2020 program, and in
particular the joint cPPP on cybersecurity, is advocating for more
privacy guarantees in terms of traffic encryption for end users

� · · ·

2

Confidentiality =⇒ full security?

With current standards, difficult choice between
data confidentiality and usability/security!!

3

Impacted use cases

� Parental control over the traffic

� Security Information and Event Management

� Detecting compromising SSH requests

� Quality service probes

� Intrusion Detection Systems (IDS)

� · · ·

4

Architecture

� Deep Packet Inspection on the content of the packet
� Use detection rules to analyse the content of the traffic

− Behavior-based detection: mostly done on meta-data that are not
encrypted (CISCO approach)

− Signature-based detection: intrusions detection using signatures

=⇒ How to manage an encrypted traffic?
5

Agenda

� Security model

� Problem and first approach

� Dealing with security-awareness

� Dealing with practicality

� Conclusion

6

Security model

7

Main procedures

� Setup(1λ): parameters param, skSE for Security Editor, skSP for
Service Provider, skS for Sender, and skR for Receiver

� RuleGen(param, skSE,M): a set B of blinded rules

� Send(param, skS,T = {tj}j): an encrypted traffic E for a receiver R

� Detect(param, skSP,E ,B): a bit b ∈ {0, 1}, stating that the
underlying traffic T is malicious (b = 0) or safe (b = 1), and some
auxiliary information aux

� Receive(param, skR,E , aux): a plain traffic T , or an error message ⊥

8

Requirements and assumptions

� High level properties
− Privacy-friendly: no access is possible to the clear-text content of

encrypted traffic
− Security-aware: it supports DPI over encrypted traffic
− Market-compliant: it achieves real-world market requirements,

including rule secrecy (know-how of the Security editor)
− Practical: it provides good performances, both in time and memory

� Assumptions on players
− Service Provider is honest-but-curious on both the traffic and the

rules
− Collusion between Service Provider and Security Editor cannot be

handled, due to dictionary attack
− Collusion between Client and Server cannot be handled, due to

over-encryption possibility (as in a non-encrypted form!!)

9

Detection property

� Any malicious traffic (that is a traffic considered as malicious when
not encrypted) must be detected by the MiddleBox

Expdet
∆,A(λ)

B ← RuleGen(param, skSE,M);
E ← A(param, skS, skR);
if Detect(param, skSP,E ,B) = 1, return 0;
T ← Receive(param, skR,E);
if Detect(T ,M) = 0, return 0;
return 1.

10

Traffic indistinguishability w.r.t. SP (resp. SE)
� It is not feasible for the Service Provider (resp. Security Editor) to

learn any information about the traffic, other than it is malicious or
safe

Expsp−tr−ind
∆,A (λ)

b←$ {0, 1};
(T0,T1, auxA)← A(skSP, param); (resp. A(skSE, param))
if type(T0,T1) = 0, return 0;
Eb ← Send(param,Tb);
b′ ← ASend,RuleGen(Eb, auxA);
return (b = b′).

Definition (Traffic Type)

Let T0 and T1 be two traffics and let R be a set of rules. We say that T0

and T1 are of the same type, denoted type(T0,T1) = 1, iff
Detect(param,T0,R) = Detect(param,T1,R), including the auxiliary
information aux.

11

Rule indistinguishability w.r.t. SP

� It is not feasible for the Service Provider to learn any information
about the rules

Expsp−rul−ind
∆,A (λ)

b←$ {0, 1};
(M0,M1, auxA)← A(param, skSP);
Bb ← RuleGen(param, skSE,Mb);
b′ ← ASend(Bb, auxA);
return (b = b′).

12

High-min entropy rule indistinguishability
� It is not feasible for Senders and Receivers to learn any information

about the rules

Exphme−rul−ind
∆,A (λ)

b←$ {0, 1};
(M0,M1)← Af (param, skSP, skS, skR);
Bb ← RuleGen(param, skSE,Mb);
b′ ← Ag (Bb);
return (b = b′).

Definition (Min-entropy)

A probabilistic adversary A = (Af ,Ag) has min-entropy µ if ∀λ ∈ N,
∀r ∈ R: Pr

[
r ′ ← Af (1λ, b) : r ′ = r

]
≤ 2−µ(λ). A is said to have high

min-entropy if it has min-entropy µ with µ(λ) ∈ ω(log λ).

13

Problem and first approach

14

Signature-based detection
� Simple example of an SQL injection
� Example

http://myserver.fr/login?username=seb&password=1234 or (a = a)

� Example of rule

alert tcp any any − > HOMENET PORTHTTP (msg: ”SQL Injec-
tion Attempt - or a=a”; content: ”GET”; httpmethod; uricontent:
“or a = a”; nocase; classtype:web-application-attack; sid:3000001;
rev:1;)

� The idea is then to search for a specific pattern inside the message
− simple case: pattern matching
− complex case: regular expression

� How to proceed if the traffic is encrypted?
− BlindBox (ACM SIGCOMM 2015): based on MPC, garbled circuits

and oblivious transfer =⇒ bad memory complexity, poor time
complexity, no rule secrecy

15

Requirements on encryption

� Server performs encryption and client performs decryption

� MiddleBox performs matching
− Taking as input an encrypted traffic and a pattern
⇒ We need an encryption scheme with searchable capacity

� But the pattern should not be known to the MiddleBox
− Due to the rule indistinguishability property
⇒ We need trapdoor-based searchable encryption
⇒ Given Tw and Encrypt(w ′), test whether w = w ′ or not

16

Decryptable searchable encryption (i)

� Based on a work by Fuhr and Paillier 2007

� F ,G ,H be three hash functions

� (q,G1, g1,G2, g2,Gt , e(., .)) be a bilinear environment

� Security editor generates tk = x ′ ← Zq and publishes pkSE = g x′

1

and a ∈ Z∗q
� Receiver generates skR = x ← Zq and publishes p̃kR = g x

1

� Key independence between pkSE and p̃kR

17

Decryptable searchable encryption (ii)
� Rule generation: for any word wi , computes Ti = F (wi)

x′

� Traffic encryption: for each token ti in the traffic, computes

c1,i = g ri
1 ;

(s1, s2)i = G (p̃k
ri

R);

c2,i = s1,i ⊕ ti ;

c3,i = g
s2,i

1 ;

ui = e(pk
s2,i

SE ,F (ti));

c4,i = H(ui) + a mod q.

� Detection: computes ui = e(c3,i ,Tj) and a′ = c4,i − H(ui) mod q.
If a 6= a′, then the token is safe.

� Traffic decryption: for each ciphertext, computes

(s1, s2)i = G (cx1,i);

ti = c2,i ⊕ s1,i

18

Obtained security

� The scheme is detectable provided that there is no collision in the
trapdoor generation function

� The scheme is traffic-indistinguishable under the CDH and the
GDDHE assumptions in the random oracle model

� The scheme is rule-indistinguishable in the random oracle model

19

Details about the implementation

� Encrypted pattern matching implies exact pattern matching
− Sliding window: every character is encrypted multiple times =⇒

better accuracy
− Delimiter-based: rules and traffic are split according to specified

symbols =⇒ more efficient

� Implemented in Java 8, using the Herumi library in C for pairings

� Intel(R) Xeon(R) with a E5-1620 CPU with 4 cores running at
3.70GHz under a 64-bit Linux OS

20

Obtain performances

� % of detected rules: 75% (only matching)

� Client time: 600 µs for each token

� Server time: 700 µs for each token

� Detection time: 700 µs for each couple (token,rule)

=⇒ 70 s for 3K rules and 1.5KB packet

� Traffic expansion (|C |/|M|): 7

21

First conclusion

� Publication: “BlindIDS:Market-Compliant and Privacy-Friendly
Intrusion Detection System over Encrypted Traffic” by SC, Ada
Diop, Nizar Kheir, Marie Paindavoine, Mohamed Sabt at AsiaCCS
2017

� Privacy-friendly =⇒ OK

� Security-aware =⇒ Should be improved

� Market-compliant =⇒ OK

� Practical =⇒ Should be improved

22

Dealing with security-awareness

23

How to treat more rules
Solutions based on sliding window method:

h o s t i l e keywords

host

hostile

...

$

EK

C0

� Each Ci can be tested using Tw

� The process must be repeated for each possible length of keywords

24

How to treat more rules
Solutions based on sliding window method:

h o s t i l e keywords

host

hostile

...

$

EK

C0 C1

� Each Ci can be tested using Tw

� The process must be repeated for each possible length of keywords

24

How to treat more rules
Solutions based on sliding window method:

h o s t i l e keywords

host

hostile

...

$

EK

C0 C1 C2

� Each Ci can be tested using Tw

� The process must be repeated for each possible length of keywords

24

How to treat more rules
Solutions based on sliding window method:

h o s t i l e keywords

host

hostile

...

$

EK

C0 C1 C2 C3

� Each Ci can be tested using Tw

� The process must be repeated for each possible length of keywords

24

How to treat more rules
Solutions based on sliding window method:

h o s t i l e keywords

host

hostile

...

$

EK

C0 C1 C2 C3 C4

� Each Ci can be tested using Tw

� The process must be repeated for each possible length of keywords

24

How to do better

� Anonymous Predicate Encryption enables to encrypt for a set of
attributes A1,. . .,An

� A secret key skP is associated with a predicate P:

C can be decrypted ⇔ P(A1, . . . ,An) = 1

� Efficient solutions exist for predicate P such that:

P(A1, . . . ,An) = 1⇔ Ai = Yi , ∀i ∈ I ⊂ [1, n]

25

Dealing with Data Streams
Each character is considered as an attribute

plaintext $ h o s t i l e
Phost,0 h o s t ∗ ∗ ∗ ∗
Phost,1 ∗ h o s t ∗ ∗ ∗
Phost,2 ∗ ∗ h o s t ∗ ∗
Phost,3 ∗ ∗ ∗ h o s t ∗
Phost,4 ∗ ∗ ∗ ∗ h o s t

keyword: host

� A predicate is defined for each keyword and each possible offset
� skPhost,j enables to check if the plaintext contains host at offset j
� Secret keys must be issued for each possible offset
� Not so good...

26

SEST

Introduction of a new primitive, Searchable Encryption with Shiftable
Trapdoors

� Similar to predicate encryption

� A Test algorithm run on EK (b1 . . . bm) and a trapdoor for
W = w1 . . .w` returns

J = {j : bj+1 . . . bj+` = w1 . . .w`}

� Security requires indistinguishability of two encrypted bitstrings,
unless issued trapdoors enable trivial distinctions

� Proposed construction based on bilinear pairing, proven secure in the
generic group model

27

Obtain performances

� % of detected rules: 90% (full (but only) matching)

� Client time: 12.5 µs for each byte

� Server time: 25 µs for each byte

� Detection time: 750 µs for each possible position

=⇒ 844 s for 3K rules and 1.5KB packet

� Traffic expansion (|C |/|M|): 64

28

Next conclusion

� Publication: “Pattern Matching on Encrypted Streams” by Nicolas
Desmoulins, Pierre-Alain Fouque, Cristina Onete, Olivier Sanders at
Asiacrypt 2018

� Privacy-friendly =⇒ OK

� Security-aware =⇒ OK

� Market-compliant =⇒ OK

� Practical =⇒ Should be improved

29

Treating regular expressions...

� Using (interactive) functional encryption
− Setup(1λ): master secret key msk and master public key mpk
− IKeyGen(AUT (msk),U(mpk, f)): interactive protocol to obtain

functional key skf (New!!)
− Enc(mpk,m): ciphertext c.
− Dec(mpk, skf , c): z such that z = f (m)

� In practice
− Sender encrypts and Receiver has full decryption
− Security editor is the authority managing the master secret key msk
− Service provider executes functional decryption Dec

30

Functionalities and security

� What about functionalities?
− Inner product permits to test equal patterns
− More general functions permit to treat regular expression

� What about security properties?
− Message privacy for traffic indistinguishability
− Blindness for rule indistinguishability (New!!)

31

Next conclusion

� In submission: “Blind Functional Encryption” by SC, Adel Hamdi,
Fabien Laguillaumie

� Construction for inner product
− Privacy-friendly =⇒ OK
− Security-aware =⇒ Should be improved
− Market-compliant =⇒ OK
− Practical =⇒ Should be improved

� Generic construction (from FHE and ZKPK)
− Privacy-friendly =⇒ OK
− Security-aware =⇒ OK (100%!)
− Market-compliant =⇒ OK
− Practical =⇒ Should strongly be improved!!!

32

Dealing with practicality

33

Using symmetric encryption techniques

� A traffic T is divided into tokens tj
� A secret key s is shared between SE, S and R

− Used by SE to compute a blinded rules Bi for each searchable pattern
− Used by S to compute a blinded version pj of each token tj
− Detection becomes a simple match, using a deterministic algorithm
− Using a pseudorandom permutation (PRP) F

action(actor) inputs actions
RuleGen(SE) rules ri , key s Bi = F (s, ri)

Send(S) tokens tj , key s pj = F (s, tj)
Receive(R) traffic pj , key s tj = F−1(s, pj)
Detect(SP) rules Bi , traffic pj Bi = pj?

34

Managing traffic indistinguishability w.r.t. SE

� Encapsulation technique avoids breaking traffic indistinguishability
by SE

� Using of a pseudorandom function (PRF) G in counter mode for
each pj

� SP should obtain both Bi and pj for detection
� Key K shared by SP, S and R

action(actor) inputs actions
RuleGen(SE) rules ri , key s Bi = F (s, ri)

Send(S) tokens tj , pj = F (s, tj)
keys (s,K) qj = G (K, j)⊕ pj

Receive(R) traffic qj , pj = qj ⊕ G (K, j)
keys (s,K) tj = F−1(s, pj)

Detect(SP) rules Bi , key K pj = G (K, j)⊕ qj
traffic qj Bi = pj?

35

Managing randomness
� Addition of a random counter c ≤ C used with the PRP F
� SE generates C blinded tokens for each rule ri during RuleGen
� Addition of a true random salt to G

action(actor) inputs actions
RuleGen(SE) rules ri , key s Bi,k = F (s, ri‖ck)

Send(S) tokens tj , pj = F (s, tj‖c)
keys (s,K), qj = G (K, salt + j)⊕ pj
counter c ,

random salt
Receive(R) traffic qj , pj = qj ⊕ G (K, salt + j)

keys (s,K), tj‖c = F−1(s, pj)
counter c , salt

Detect(SP) rules Bi , key K, pj = G (K, salt+j)⊕ qj
traffic qj , salt Bi = pj?

36

Non-inversibility of blinded rules
� A fraudulent sender or receiver can inverse the Bi,k ’s =⇒ replace F

by a non-reversible pseudorandom function
� Receiver is no more able to decrypt the traffic =⇒ Additional TLS

encryption with a shared k
� Sender can send two different traffics =⇒ SP hashes the encrypted

tokens pj

action(actor) inputs actions
RuleGen(SE) rules ri , key s Bi,k = F (s, ri‖ck)

Send(S) tokens tj , e = TLS(k, {tj}j),
keys (s,K, k), counter c , pj = F (s, tj‖c),

random salt qj = G (K, salt + j)⊕ pj
Receive(R) traffic e, {tj}j = TLS−1(k, e),

keys (s,K, k), counter c , pj = F (s, tj‖c),
salt, hash hj hj = H(pj)?

Detect(SP) rules Bi , pj = G (K, salt + j)⊕ qj ,
key K, Bi = pj?,

traffic qj , salt hj = H(pj)37

Decreasing the number of blinded rules
� SE has to compute a number of encrypted rules proportional to the

number of couples S/R times the constant C =⇒ make use of a
broadcast encryption scheme BE

action(actor) inputs actions
RuleGen(SE) rules ri , (s,Hdr) = BE.Enc(mk, I)

master key mk Bi,k = F (s, ri‖ck)
Send(S) tokens tj , s = BE.Dec(skn,Hdr)

keys (skn,K, k), e = TLS(k, {tj}j),
counter c , pj = F (s, tj‖c),

random salt qj = G (K, salt + j)⊕ pj
Receive(R) traffic e, s = BE.Dec(skñ,Hdr),

keys (skñ,K, k), {tj}j = TLS−1(k, e),
counter c , pj = F (s, tj‖c),

salt, hash hj hj = H(pj)?
Detect(SP) rules Bi , pj = G (K, salt + j)⊕ qj ,

key K, Bi = pj?,
traffic qj , salt hj = H(pj)38

Obtained security

� The scheme is detectable if hash function is collision resistant

� The scheme is traffic-indistinguishable if broadcast encryption is
indistinguishable, F and G are pseudorandom

� The scheme is rule-indistinguishable if broadcast encryption is
indistinguishable, F is pseudorandom and fixed-key PRF F is
one-way

39

Obtain performances

� % of detected rules: 75% (only matching)

� Client time: 200 ns for each token

� Server time: 250 ns for each token

� Detection time: 10 ns for each couple (token,rule)

=⇒ 1.5 µs for 3K rules and 1.5KB packet (compare to 70 s and 844 s!)

� Traffic expansion (|C |/|M|): 2

40

Next conclusion (again)

� In submission: “Towards Truly Practical Intrusion Detection System
over Encrypted Traffic” by SC, Chaoyun Li

� Privacy-friendly =⇒ OK

� Security-aware =⇒ Should be improved

� Market-compliant =⇒ OK

� Practical =⇒ OK

� But take care of key management and counter...

41

Final conclusion: ANR PRESTO project

� Consortium: ENS (leader), IMT, LORIA, Orange, 6cure

� Duration: 4 years

� Main techniques: searchable encryption, functional encryption,
(homomorphic encryption)

� Use cases (on-line and off-line): denial of service attacks, content
filtering, forensic analysis

� Standardization...

42

Thank you

Thanks to Nicolas Desmoulins (Orange), Äıda Diop (Orange, Telecom
SudParis), Pierre-Alain Fouque (Université de Rennes), Adel Hamdi
(Orange, ENS Lyon) Nizar Kheir (Thales), Fabien Laguillaumie (ENS
Lyon), Chaoyun Li (KUL), Cristina Onete (Université de Limoges), Marie
Paindavoine (Thales), Mohamed Sabt (IRISA), Olivier Sanders (Orange)

43

