Voting: You Can't Have Privacy without Individual Verifiability

Véronique Cortier, Joseph Lallemand

March 1, 2019

Introduction: e-voting protocols

- Using computers to organise elections
 voting machines in polling stations
 remote voting on the Internet
- More convenient
 - \longrightarrow for voters: vote from home, or abroad
 - \longrightarrow for authorities: easier to record and tally votes
- Many protocols have been proposed: Helios, Belenios, Civitas, Prêt-à-Voter,...
- But of course: need to ensure voting protocols are secure

Voting protocols

Voting protocols

Voting protocols

 \implies What does it mean for a voting protocol to be secure?

E-voting: security properties

Several properties have been defined:

privacy:

...

no one should know who I voted for

verifiability:

everyone can ensure that the votes are correctly counted

receipt-freeness/coercion resistance:

even if I want to, I can't prove who I voted for to someone else

Vote privacy

- What does it mean for the vote to be private ?
- An attacker is unable to tell *who voted for who*
- Indistinguishability property

Verifiability

Divided into three subproperties:

individual verifiability:

I can check that my vote is in the ballot box

universal verifiability:

everyone can check that the result corresponds to the ballot box

eligibility verifiability:

every ballot in the box was cast by a legitimate, registered voter

Privacy vs Verifiability

The two properties seem opposed:

- Privacy: give no information about how people voted
- ► Verifiability: give *enough information* to check each vote is counted

Privacy vs Verifiability

The two properties seem opposed:

- Privacy: give no information about how people voted
- ► Verifiability: give *enough information* to check each vote is counted
- Impossibility result: [Chevallier-Mames, Fouque, Pointcheval, Stern, Traoré, 2010] unconditional privacy and verifiability are incompatible (i.e. for an attacker with unbounded computing power)

Privacy vs Verifiability

The two properties seem opposed:

- Privacy: give no information about how people voted
- ► Verifiability: give *enough information* to check each vote is counted
- Impossibility result: [Chevallier-Mames, Fouque, Pointcheval, Stern, Traoré, 2010] unconditional privacy and verifiability are incompatible (i.e. for an attacker with unbounded computing power)
- Regulations choose one over the other
 Ex: in France or Switzerland, privacy is prioritised over verifiability

Our result

Theorem (informal)

We show that, in fact,

 $Privacy \implies Individual Verifiability$

- Counter-intuitive, but does not contradict previous impossibility result
 —> our result is for a polynomial attacker
- How is it possible that some protocols are known to be private and non verifiable?
- What does this tell us about privacy?

Computational model

Voting scheme:

(Setup, Vote, VerifVoter, Tally, Valid)

- Setup (1^{λ}) : generate the *election keys* (pk, sk)
- ▶ Vote(id, pk, v): construct a ballot containing the vote v for voter id
- VerifVoter(id, L, BB): voter id checks her vote is counted in BB
- ▶ Tally(BB, sk): compute the tally of the ballots on the board BB
- Valid(id, b, BB, pk): checks that a ballot b cast by id is valid w.r.t. BB

counting function ρ : votes \rightarrow result with *partial tallying*: $\forall A, B. \ \rho(A \uplus B) = \rho(A) * \rho(B)$ Ex: multiset, sum, ...

Privacy is defined as a cryptographic game [Benaloh, 1987]

$$\frac{\mathcal{O}_{\mathsf{vote}}^{\beta}(id, v_0, v_1)}{b \leftarrow \mathsf{Vote}(id, \mathsf{pk}, v_{\beta})}$$

$$\mathsf{BB} \leftarrow \mathsf{BB} \| b$$

$$\mathsf{V}_0 \leftarrow \mathsf{V}_0 \| v_0$$

$$\mathsf{V}_1 \leftarrow \mathsf{V}_1 \| v_1$$
return b

 $\mathcal{O}_{\mathsf{cast}}(\mathit{id}, \mathit{b})$

if Valid(*id*, *b*, BB, pk) then BB \leftarrow BB||b

Advantage of the adversary: $\left| \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},0}(\lambda) = 1 \right] - \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},1}(\lambda) = 1 \right] \right|$

Voting: Privacy vs Verifiability

Privacy is defined as a cryptographic game [Benaloh, 1987]

Privacy is defined as a cryptographic game [Benaloh, 1987]

$$\begin{array}{ccc} \underline{\mathsf{Exp}}_{\mathcal{A}}^{\mathsf{priv},\beta}(\lambda) & \mathcal{O}_{\mathsf{vote}}^{\beta}(id,v_0,v_1) & \mathcal{O}_{\mathsf{cast}}(id,b) \\ (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Setup}(1^{\lambda}) & b \leftarrow \mathsf{Vote}(id,\mathsf{pk},v_{\beta}) \\ \mathcal{A}_{1}^{\mathcal{O}_{\mathsf{vote}},\mathcal{O}_{\mathsf{cast}}}(\mathsf{pk}) & \mathsf{BB} \leftarrow \mathsf{BB} \| b \\ \mathbf{if} \ \rho(\mathsf{V}_0) = \rho(\mathsf{V}_1) \ \mathbf{then} & \mathsf{V}_0 \leftarrow \mathsf{V}_0 \| v_0 \\ r \leftarrow \mathsf{Tally}(\mathsf{BB},\mathsf{sk}) & \mathsf{v_1} \leftarrow \mathsf{V}_1 \| v_1 \\ \mathbf{return} \ \mathcal{A}_2(\mathsf{pk},r) & \mathsf{return} \ b \end{array}$$
Cast oracle:
$$\begin{array}{c} \mathsf{cast} \ b \ \mathsf{to} \ \mathsf{the} \ \mathsf{ballot} \ \mathsf{box} \\ \mathsf{for \ dishonest \ id} \\ \mathsf{Lxp}_{\mathcal{A}} \ (\lambda) = \mathbf{1} \end{bmatrix} - \mathsf{r} \ \mathsf{Lxp}_{\mathcal{A}}^{\mathsf{priv},1}(\lambda) = \mathbf{1} \end{bmatrix} | \\ \end{array}$$

Advantage of the adversary: $\left| \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},0}(\lambda) = 1 \right] - \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},1}(\lambda) = 1 \right] \right|$

Joseph Lallemand

Voting: Privacy vs Verifiability

March 1, 2019 10 / 22

Advantage of the adversary: $\left| \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},0}(\lambda) = 1 \right] - \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},1}(\lambda) = 1 \right] \right|$

Joseph Lallemand

Voting: Privacy vs Verifiability

March 1, 2019 10 / 22

Advantage of the adversary: $\left| \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},0}(\lambda) = 1 \right] - \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},1}(\lambda) = 1 \right] \right|$

Joseph Lallemand

Voting: Privacy vs Verifiability

March 1, 2019 10 / 22

Privacy is defined as a cryptographic game [Benaloh, 1987]

$$\frac{\mathcal{O}_{\mathsf{vote}}^{\beta}(id, v_0, v_1)}{b \leftarrow \mathsf{Vote}(id, \mathsf{pk}, v_{\beta})}$$

$$\mathsf{BB} \leftarrow \mathsf{BB} \| b$$

$$\mathsf{V}_0 \leftarrow \mathsf{V}_0 \| v_0$$

$$\mathsf{V}_1 \leftarrow \mathsf{V}_1 \| v_1$$
return b

 $\mathcal{O}_{\mathsf{cast}}(\mathit{id}, \mathit{b})$

if Valid(*id*, *b*, BB, pk) then BB \leftarrow BB||b

Advantage of the adversary: $\left| \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},0}(\lambda) = 1 \right] - \mathsf{P} \left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv},1}(\lambda) = 1 \right] \right|$

Voting: Privacy vs Verifiability

Individual verifiability: game-based definition

$$\begin{split} & \frac{\mathsf{Exp}_{\mathcal{A}}^{\mathsf{verif}}(\lambda)}{(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Setup}(1^{\lambda})} \\ & \mathcal{A}^{\mathcal{O}_{\mathsf{vote}},\mathcal{O}_{\mathsf{cast}}}(\mathsf{pk}) \\ & r \leftarrow \mathsf{Tally}(\mathsf{BB},\mathsf{sk}) \\ & \text{if } \exists V_c. \ r = \rho(\mathsf{Voted} \cup V_c) \text{ then} \\ & \text{return } 0 \\ & \text{else return } 1 \end{split}$$

Individual verifiability: game-based definition

Individual verifiability: game-based definition

Main result

Theorem (Privacy implies Individual Verifiability (computational))

$$\exists \mathcal{A}. \ \mathsf{P}\left[\mathsf{Exp}_{\mathcal{A}}^{\mathsf{verif}}(\lambda) = 1\right] \text{ not negligible } \Longrightarrow$$

$$\exists \mathcal{B}. \ \left|\mathsf{P}\left[\mathsf{Exp}_{\mathcal{B}}^{\mathsf{priv},0}(\lambda) = 1\right] - \mathsf{P}\left[\mathsf{Exp}_{\mathcal{B}}^{\mathsf{priv},1}(\lambda) = 1\right]\right| \text{ not negligible.}$$

We also prove the same implication in a symbolic model (process algebra), to show its generality:

Theorem (Privacy implies Individual Verifiability (symbolic))

$$\forall \alpha, \mathbf{a}, \mathbf{b}. \ P_{\alpha \cup \{\mathbf{a} \mapsto \mathbf{0}, \mathbf{b} \mapsto \mathbf{1}\}} \approx P_{\alpha \cup \{\mathbf{a} \mapsto \mathbf{1}, \mathbf{b} \mapsto \mathbf{0}\}} \implies$$

 $\forall \alpha. \ \forall (t.\operatorname{out}(\mathit{ch}_r, x), \phi) \in \operatorname{trace}(P_\alpha). \ \exists V_c. \ \phi(x) = \rho(\mathit{Voted}(t) \uplus V_c).$

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

Intuition:

 assume that the attacker can break verifiability by turning Alice's vote into 1

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

- assume that the attacker can break verifiability by turning Alice's vote into 1
- consider an attacker against privacy

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

- assume that the attacker can break verifiability by turning Alice's vote into 1
- consider an attacker against privacy
- the attacker turns Alice's vote to 1

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

- assume that the attacker can break verifiability by turning Alice's vote into 1
- consider an attacker against privacy
- the attacker turns Alice's vote to 1
- ▶ the result is {1, Bob's vote}

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

- assume that the attacker can break verifiability by turning Alice's vote into 1
- consider an attacker against privacy
- the attacker turns Alice's vote to 1
- ▶ the result is {1, Bob's vote}
- \implies the attacker learns Bob's vote, and breaks privacy

Assuming there is an attack on individual verifiability, we construct an attack on privacy.

Intuition:

- assume that the attacker can break verifiability by turning Alice's vote into 1
- consider an attacker against privacy
- the attacker turns Alice's vote to 1
- ▶ the result is {1, Bob's vote}
- \implies the attacker learns Bob's vote, and breaks privacy

We generalise this idea to any attack on verifiability.

Proof sketch (assuming a blank vote) Assuming A breaks verifiability we build B that breaks privacy.

A

R

B=0 1 B=1

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

Assuming \mathcal{A} breaks verifiability we build \mathcal{B} that breaks privacy.

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

Voting: Privacy vs Verifiability

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

 \mathcal{B} makes *id*_{*i*} vote v_i on the left, and *blank* on the right.

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

$$\mathcal{A} \qquad \begin{array}{c} id_{a} & \dots & id_{n} \\ V_{a} & \dots & V_{n} \end{array}$$

$$\mathcal{B} \qquad \begin{array}{c} id_{a} & \dots & id_{n} \\ id_{a} & \dots & id_{n} \\ V_{a} & \dots & V_{n} \end{array} \qquad \begin{array}{c} \beta = 0 \\ id_{a} & \dots & id_{n} \\ id_{a$$

 \mathcal{B} makes id_i vote v_i on the left, and blank on the right.

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

At this point, the tally would be

- on the left: some r that does not contain all the v_i
- ▶ on the right: some r'.

Assuming \mathcal{A} breaks verifiability we build \mathcal{B} that breaks privacy.

At this point, the tally would be

- on the left: some r that does not contain all the v_i
- on the right: some r'.

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

At this point, the tally would be

• on the left: some r that does not contain all the v_i

- ▶ on the right: some r'.
- \triangleright B then makes each *id*; vote *blank* on the left, and *v*; on the right.

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

• The sets of honest votes are the same on both sides: \mathcal{B} gets the result.

► The result is:

- on the left: $r * blank^n = r$
- on the right: $r' * v_1 * \ldots * v_n$

Assuming $\mathcal A$ breaks verifiability we build $\mathcal B$ that breaks privacy.

 \blacktriangleright The sets of honest votes are the same on both sides: ${\cal B}$ gets the result.

The result is:

- on the left: $r * blank^n = r$
- on the right: $r' * v_1 * \ldots * v_n$

Assuming \mathcal{A} breaks verifiability we build \mathcal{B} that breaks privacy.

▶ B checks if the result contains all the v_i: yes on the right, no on the left.

Designing a private voting system without caring for verifiability is hopeless:

you need at least individual verifiability

Designing a private voting system without caring for verifiability is hopeless:

you need at least individual verifiability

But some protocols are proved private while non verifiable? Ex: Helios without modelling the verification steps

Designing a private voting system without caring for verifiability is hopeless:

you need at least individual verifiability

- But some protocols are proved private while non verifiable?
 Ex: Helios without modelling the verification steps
 - \rightarrow Our result:

 $\mathsf{Privacy} \Rightarrow \mathsf{Individual} \text{ verifiability } \textit{with the same trust assumptions}$

Designing a private voting system without caring for verifiability is hopeless:

you need at least individual verifiability

- But some protocols are proved private while non verifiable?
 Ex: Helios without modelling the verification steps
 - \rightarrow Our result:

 $\mathsf{Privacy} \Rightarrow \mathsf{Individual} \text{ verifiability } \textit{with the same trust assumptions}$

 \rightarrow What is usually studied:

Privacy vs honest ballot box but Verifiability vs dishonest ballot box

Designing a private voting system without caring for verifiability is hopeless:

you need at least individual verifiability

- But some protocols are proved private while non verifiable?
 Ex: Helios without modelling the verification steps
 - \rightarrow Our result:

 $\mathsf{Privacy} \Rightarrow \mathsf{Individual} \ \mathsf{verifiability} \ \mathit{with} \ \mathit{the same trust} \ \mathit{assumptions}$

 \rightarrow What is usually studied:

Privacy vs honest ballot box but Verifiability vs dishonest ballot box

But protocols aim for privacy against a dishonest ballot box!

The problem with privacy

 Problem with existing game-based definitions: the ballot box is assumed honest
 —> considerably weakens privacy!

The problem with privacy

 Problem with existing game-based definitions: the ballot box is assumed honest

 — considerably weakens privacy!

- Because privacy against a dishonest ballot box is hard: adapting naïvely the definition does not work
- A dishonest ballot box can drop every ballot except Alice's

 —> The result is just Alice's vote!

The problem with privacy

 Problem with existing game-based definitions: the ballot box is assumed honest

 — considerably weakens privacy!

- Because privacy against a dishonest ballot box is hard: adapting naïvely the definition does not work
- A dishonest ballot box can drop every ballot except Alice's

 —> The result is just Alice's vote!
- ▶ We need a new definition of privacy, against a dishonest ballot box

- Privacy is linked with verifiability
 - \implies let's introduce the verification steps of the protocol in privacy!

- Privacy is linked with verifiability
 - \implies let's introduce the verification steps of the protocol in privacy!
- The attacker can't distinguish who voted for who, provided all voters perform the verifications:

 $\underline{\mathsf{Exp}}_{\mathcal{A}}^{\mathsf{priv}-\mathsf{careful},\beta}(\lambda)$ $\mathcal{O}_{\text{vote}}(id, v_0, v_1)$ $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Setup}(1^{\lambda})$ $b \leftarrow Vote(id, pk, v_{\beta})$ $V_i \leftarrow V_i || v_i \text{ for } i \in \{0, 1\}$ $\mathsf{BB} \leftarrow \mathcal{A}_1^{\mathcal{O}_{\mathsf{vote}}}(\mathsf{pk})$ $L_{id} \leftarrow L_{id} || (b, v_{\beta})$ $\mathcal{A}_{2}^{\mathcal{O}_{happy}^{BB}}(pk)$ return b if $\forall id \in V_0, V_1$. $id \in H \land \rho(V_0) = \rho(V_1)$ then $r \leftarrow \text{Tally}(BB, sk)$ $\mathcal{O}_{happy}^{BB}(id)$ else $r \leftarrow \bot$ if VerifVoter(*id*, L_{*id*}, BB) then return $\mathcal{A}_3(pk, r)$ $H \leftarrow H \parallel id$

Privacy is lin Dishonest ballot box: provided by the attacker => let's introduce the verification stypes of the protocol in privacy!

The attacker can't distinguish who voted for who, provided all voters perform the verifications:

 $\frac{\mathsf{Exp}_{\mathcal{A}}^{\mathsf{priv-careful},\beta}(\lambda)}{(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Setup}(1^{\lambda})}$

 $\mathsf{BB} \leftarrow \mathcal{A}_1^{\mathcal{O}_\mathsf{vote}}(\mathsf{pk}) \bigstar$

 $\mathcal{A}_2^{\mathcal{O}_{happy}^{BB}}(\mathsf{pk})$

if $\forall id \in V_0, V_1. id \in H \land \rho(V_0) = \rho(V_1)$ then

 $\textit{r} \leftarrow \mathsf{Tally}(\mathsf{BB},\mathsf{sk})$

else $r \leftarrow \bot$

return $\mathcal{A}_3(\mathsf{pk}, r)$

$$\begin{split} & \frac{\mathcal{O}_{\mathsf{vote}}(\mathit{id}, v_0, v_1)}{b \leftarrow \mathsf{Vote}(\mathit{id}, \mathsf{pk}, v_\beta)} \\ & \mathsf{V}_i \leftarrow \mathsf{V}_i \| v_i \text{ for } i \in \{0, 1\} \\ & \mathsf{L}_{\mathit{id}} \leftarrow \mathsf{L}_{\mathit{id}} \| (b, v_\beta) \\ & \mathsf{return} \ b \end{split}$$

 $\mathcal{O}_{\mathsf{happy}}^{\mathsf{BB}}(\mathit{id})$

 $\begin{array}{l} \text{if } VerifVoter(\mathit{id}, \mathsf{L}_{\mathit{id}}, \mathsf{BB}) \text{ then} \\ \mathsf{H} \leftarrow \mathsf{H} \| \mathit{id} \end{array}$

Our proposition: privacy with careful voters Privacy is lin Dishonest ballot box: provided by the attacker \implies let's introduce the verification stype of the protocol in privacy! Vote oracle as before The attacker can't distinguish who voted for who. provided all voters perform the verifications: $\operatorname{Exp}_{A}^{\operatorname{priv-careful},\beta}(\lambda)$ $\mathcal{O}_{\text{vote}}(id, v_0, v_1)$ $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Setup}(1^{\lambda})$ $b \leftarrow \text{Vote}(id, pk, v_{\beta})$ $\mathsf{BB} \leftarrow \mathcal{A}_1^{\mathcal{O}_{\mathsf{vote}}}(\mathsf{pk}) \blacktriangleleft$ $V_i \leftarrow V_i || v_i \text{ for } i \in \{0, 1\}$ $L_{id} \leftarrow L_{id} \| (b, v_{\beta})$ $\mathcal{A}_{2}^{\mathcal{O}_{happy}^{BB}}(pk)$ return b if $\forall id \in V_0, V_1$. $id \in H \land \rho(V_0) = \rho(V_1)$ then $r \leftarrow \text{Tally}(BB, sk)$ $\mathcal{O}_{happy}^{BB}(id)$ else $r \leftarrow \bot$ if VerifVoter(*id*, L_{*id*}, BB) then return $\mathcal{A}_3(pk, r)$ $H \leftarrow H \parallel id$

- Privacy is linked with verifiability
 - \implies let's introduce the verification steps of the protocol in privacy!
- The attacker A triggers voters' verifications provided all voters perform the verifications:
- $\mathsf{Exp}^{\mathsf{priv}-\mathsf{careful},\beta}_{\mathcal{A}}(\lambda)$
- $(\mathsf{pk},\mathsf{sk}) \gets \mathsf{Setup}(1^\lambda)$
- $\mathsf{BB} \leftarrow \mathcal{A}_1^{\mathcal{O}_\mathsf{vote}}(\mathsf{pk})$
- $\mathcal{A}_{2}^{\mathcal{O}_{happy}^{BB}}(\mathsf{pk})$
- if $\forall id \in V_0, V_1. id \in H \land \rho(V_0) = \rho(V_1)$ then
 - $\textit{r} \gets \mathsf{Tally}(\mathsf{BB},\mathsf{sk})$
- else $r \leftarrow \bot$
- return $\mathcal{A}_3(\mathsf{pk}, r)$

ns: $\frac{\mathcal{O}_{\text{vote}}(id, v_0, v_1)}{b \leftarrow \text{Vote}(id, \text{pk}, v_\beta)}$ $V_i \leftarrow V_i \| v_i \text{ for } i \in \{0, 1\}$ $L_{id} \leftarrow L_{id} \| (b, v_\beta)$ return b

 $\mathcal{O}_{\rm happy}^{\rm BB}(\mathit{id})$

 $\label{eq:constraint} \begin{array}{l} \text{if } VerifVoter(\mathit{id}, \mathsf{L}_{\mathit{id}}, \mathsf{BB}) \text{ then} \\ \\ \mathsf{H} \leftarrow \mathsf{H} \| \mathit{id} \end{array}$

- Privacy is linked with verifiability
 - \implies let's introduce the verification steps of the protocol in privacy!
- The attacker can't distinguish who voted for who, provided all voters perform the verifications:

Our result still holds for our new definition:

Theorem

Privacy against a dishonest ballot box with careful voters

Individual Verifiability against a dishonest ballot box

Our result still holds for our new definition:

Theorem

Privacy against a dishonest ballot box with careful voters

Individual Verifiability against a dishonest ballot box

▶ We apply it to a few existing protocols, to show its relevance

Protocol	Honest box	Dishonest box naïve	Careful voters	
Helios	1	×	×	[attack P. Roenne]
Belenios	1	X	1	
Civitas (no revote)	1	×	1	
Neuchâtel (no revote)	1	×	×	[assumes an honest box]
\checkmark : the protocol is private, \pmb{X} : attack on privacy				

Work in progress: towards more precise definitions

- Privacy with careful voters is a first step, but not enough: only says something when everyone verifies
 = "among people who check, the attacker does not know who voted for who"
- Problem: not easy to have an indistinguishability game for voters who do not check
 - = as soon as someone does not check, there *is* a loss of privacy
- Seems more doable with another way of writing properties

Simulation-based definition

- Idea: describe an ideal system, where the attacker "obviously" has no power
- Prove (reduction) that the ideal attacker can simulate everything the real one can do.

Ideal functionality for voting

Case of a honest ballot box:

Ideal functionality $F_{voting}(\rho)$ interacts with environment \mathcal{E} and simulator S. $F_{voting}(\rho)$ accepts two kinds of messages:

- ▶ on input vote(id, v) from E or S: store (id, v) in a list L, and send ack(id) to S.
- on input *tally* from *S*, return $\rho(L)$ to \mathcal{E} and *S*, then halt.

Clearly, S learns no information on the honest votes.

 \rightarrow Problem: with a dishonest ballot box, this cannot be realised \rightarrow Need to distinguish between voters who check and others

Conclusion

► A counter-intuitive result:

 $\mathsf{Privacy} \Longrightarrow \mathsf{Individual} \ \mathsf{Verifiability}$

- Proved in computational and symbolic models
- Better understanding of privacy: some verifiability is required!

Conclusion

A counter-intuitive result:

 $\mathsf{Privacy} \Longrightarrow \mathsf{Individual} \ \mathsf{Verifiability}$

- Proved in computational and symbolic models
- Better understanding of privacy: some verifiability is required!
- Highlights limitations of game-based current definitions: only honest ballot boxes [Bernhard, Smyth, 2014]

Conclusion

A counter-intuitive result:

 $\mathsf{Privacy} \Longrightarrow \mathsf{Individual} \ \mathsf{Verifiability}$

- Proved in computational and symbolic models
- Better understanding of privacy: some verifiability is required!
- Highlights limitations of game-based current definitions: only honest ballot boxes [Bernhard, Smyth, 2014]
- A new definition of privacy against a dishonest ballot box

 —> modelling verification steps
- Limitation: assumes everyone checks their vote

 —> Future work: more plausible scenario where only some voters check