
MILP Modelings for Symmetric Cryptography and More

Christina Boura
(Joint-work with Daniel Coggia)

Université de Versailles and Inria Paris

29 April 2022

1 / 42

Symmetric-key encryption

Alice and Bob share the same secret key for encryption and decryption.

DecryptionEncryption

Some well-known families of symmetric algorithms:

1 Stream ciphers

2 Block ciphers

3 Hash functions

2 / 42

Substitution Permutation Network (SPN)

S S S S

m

k1

S S S S

k2

S S S S

k
r

c

Linear Layer

Linear Layer

Linear Layer

3 / 42

Sbox

An Sbox can be seen as a vectorial Boolean function

S : Fn
2 → Fm

2

Typically n = m and n ∈ {3, 4, 5, 6, 7, 8}

S

Example (Sbox of PRESENT)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

An Sbox is usually the only nonlinear component of the cipher.

Security arguments for the cipher heavily depend on the properties of
the Sbox.

4 / 42

Differential attacks

Design strategy: A block cipher should resist all state-of-the-art attacks.

Differential cryptanalysis: one of the most prominent attacks against block
ciphers [Biham - Shamir ’90].

For an SPN cipher, the security
against differential cryptanalysis
reduces on the differential properties
of the Sbox.

F

x

F (x)

F

x+ α

F (x+ α)

α

β

5 / 42

Difference Distribution Table (DDT)

DDT (α, β) = #{x ∈ Fn
2 : F (x+ α) + F (x) = β}

α/β 0 1 2 3 4 5 6 7

0 8

1 . 2 . 2 . 2 . 2
2 . . 2 2 . . 2 2
2 . 2 2 . . 2 2 .

4 2 2 2 2
5 . 2 . 2 2 . 2 .

6 . . 2 2 2 2 . .

7 . 2 2 . 2 . . 2

Maximal differential probability pmax =
2

23
=

1

4
.

6 / 42

Mixed Integer Linear Programming (MILP)

Objectif c1x1 + · · ·+ cnxn c · x

Constraints a1,1x1 + · · ·+ a1,nxn ≤ b1
a2,1x1 + · · ·+ a2,nxn ≤ b2 A · x ≤ b

...
am,1x1 + · · ·+ am,nxn ≤ bm

Domain x1, . . . , xd ∈ Z, xd+1, . . . , xn ∈ R

x1, . . . , xn ∈ {0, 1}

Objective function and all constraints are linear.

Some variables are integers, some variables are continuous.

Typically in our applications, almost all variables are Boolean.

7 / 42

Example of a MILP Problem

Minimize − x1 − x2

Subject To − 2x1 + 2x2 ≥ 1

− 8x1 + 10x2 ≤ 13

where x1, x2 ∈ Z and x1, x2 ≥ 0.

Many good available solvers: Gurobi, CPLEX, . . .

8 / 42

Modeling possible transitions through an Sbox

0 1 2 3 4 5 6 7

0 8
1 . 2 . 2 . 2 . 2
2 . . 2 2 . . 2 2
3 . 2 2 * . 2 2 *
4 2 2 2 2
5 . 2 . 2 2 . 2 .
6 . . 2 2 2 2 . .
7 . 2 2 * 2 . . 2

Input diff. x = (x0, x1, x2)
Output diff. y = (y0, y1, y2)

−2x0 − 2x1 + x2 − 2y0 − 2y1 + y2 ≥ −6

9 / 42

Modeling possible transitions through an Sbox

0 1 2 3 4 5 6 7

0 8
1 . 2 . 2 . 2 . 2
2 . . 2 2 . . 2 2
3 . 2 2 . . 2 2 .
4 2 2 2 2
5 . 2 . 2 2 * 2 *
6 . . 2 2 2 2 . .
7 . 2 2 . 2 * . 2

Input diff. x = (x0, x1, x2, x3)
Output diff. y = (y0, y1, y2, y3)

−2x0 − 2x1 + x2 − 2y0 − 2y1 + y2≥ −6

−2x0 + x1 − 2x2 − 2y0 + y1 − 2y2 ≥ −6

9 / 42

Modeling possible transitions through an Sbox

0 1 2 3 4 5 6 7

0 8
1 . 2 . 2 . 2 . 2
2 . . 2 2 . . 2 2
3 . 2 2 . . 2 2 .
4 2 2 2 2
5 . 2 . 2 2 . 2 .
6 . . 2 2 2 2 * *
7 . 2 2 . 2 . * 2

Input diff. x = (x0, x1, x2, x3)
Output diff. y = (y0, y1, y2, y3)

−2x0 − 2x1 + x2 − 2y0 − 2y1 + y2≥ −6

−2x0 + x1 − 2x2 − 2y0 + y1 − 2y2≥ −6

x0 − 2x1 − 2x2 + y0 − 2y1 − 2y2 ≥ −6

9 / 42

Modeling possible transitions through an Sbox

0 1 2 3 4 5 6 7

0 8 * * * * * * *
1 * 2 * 2 * 2 * 2
2 * * 2 2 * * 2 2
3 * 2 2 * * 2 2 *
4 * * * * 2 2 2 2
5 * 2 * 2 2 * 2 *
6 * * 2 2 2 2 * *
7 * 2 2 * 2 * * 2

Input diff. x = (x0, x1, x2, x3)
Output diff. y = (y0, y1, y2, y3)

−2x0 − 2x1 + x2 − 2y0 − 2y1 + y2 ≥ −6

−2x0 + x1 − 2x2 − 2y0 + y1 − 2y2 ≥ −6

x0 − 2x1 − 2x2 + y0 − 2y1 − 2y2 ≥ −6

x0 + 2x1 + 4x2 + 3y0 + 2y1 − 4y2 ≥ 0

−3x0 + 2x1 − x2 + 4y0 + 2y1 + 4y2 ≥ 0

4x0 − 2x1 + x2 − 2y0 + 4y1 + 3y2 ≥ 0
9 / 42

Modeling a Boolean function

Modeling differential transitions through an Sbox, is equivalent to modeling
the Boolean function.

F2n
2 → F2

(x, y) 7→

{
0, if DDT(x, y) = 0,
1, otherwise.

General problem:

Construct an efficient MILP model for a given Boolean function.

10 / 42

Modeling: A two-step process

Goal: Model efficiently a Boolean function by a system of linear
inequalities.

Two sub-problems:

Problem 1 How to generate a (possibly large) set of inequalities that
correctly models the function?

Problem 2 How to choose a (typically much smaller) subset of this set of
inequalities that still correctly represents the function but
leads to more efficient MILP models?

Two different approches proposed in 2014 by Sun et al. for Problem 1:

1 Convex hull approach

2 Logical condition modeling

11 / 42

Convex Hull Method

Let F be an m-bit Boolean function.

Input of F : (x0, . . . , xm−1) ∈ Rm.

Compute the H-representation of the
convex hull of all possible transitions
seen as vectors of Rm.

The (m− 1)-dimensional faces of the
convex hull yields a correct set of linear
inequalities excluding all impossible
points.

Compute the H-representation with an al-
gebra computer system (eg. Sage).

12 / 42

Logical Condition Modeling

Let a = (a0, . . . , am−1) ∈ Fm
2 be such that F (a) = 0. The inequality

m−1∑

i=0

(1− ai)xi + ai(1− xi) =

m−1∑

i=0

xi ⊕ ai ≥ 1

only discards a.

Example Suppose a = 0x16 = (100011) ∈ F6
2 is such that F (a) = 0.

Then,

−x0 + x1 + x2 + x3 − x4 − x5 ≥ −2

is satisfied by all points in F6
2 but a.

This method yields easily a system of inequalities with as many
constraints as the number of points for which F (a) = 0.

13 / 42

Problem for large Boolean functions

Advantage: Both methods provide a solution for Problem 1, that is
relatively efficient for small Boolean functions (n ≤ 10).

Disadvantage: Not efficient for modeling 8-bit Sboxes (i.e. 16-bit
Boolean functions), very popular in cryptography.

Computing the convex hull for 16-bit Boolean functions is
computationally hard.

The second method yields a very high number of initial inequalities
with by construction no hope for a correct subset for Problem 2.

For example:

AES 33150 impossible transitions

SKINNY-128 54067 impossible transitions

14 / 42

Modeling for large Sboxes

Abdelkhalek et al. made in 2017 a step forwards for the large function
Boolean problem (8-bit Sboxes):

Search for good inequalities for 16-bit Boolean functions
=

Minimize the product-of-sum representation of a Boolean function

Example

x = (x0, x1, x2) (000)(100)(010)(110)(001)(000)(011)(111)

F(x) 0 0 1 0 1 1 0 1

(x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1 + x2)

15 / 42

Quine-McCluskey (QM) algorithm

Minimize the product-of-sum representation of a Boolean function.

Example

(x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1 + x2)

⇔

(x1 + x2)(x0 + x1 + x2)(x0 + x1 + x2)

Solve at once the two steps of the modelization problem:

1 Find many good inequalities (the prime implicants in the QM
vocabulary)

2 Keep among them a good representative set.

16 / 42

About the QM approach

Advantages

1 First interesting method for 16-bit Boolean functions

2 Good results for some Sboxes (e.g. SKINNY-128)

But:

QM needs high memory ressources and it can be slow.

Some heuristic algorithm (e.g. Espresso) must be used instead.

The number of inequalities given with this method for some functions
is still too high to be efficient.

Algorithm # impossible trans. QM Espresso

AES 33150 - 8302
SKINNY-128 54067 372 376

17 / 42

How to solve Problem 2

Once Problem 1 solved, one must choose among the initial set a good
representative set for covering the Sbox (Problem 2).

Necessary step: High number of inequalities ⇒ important impact on
the optimization time.

Not evident: How to determine how many and which inequalities to
keep?

Two approaches in the literature:

Approach 1 Greedy algorithm: Choose at each step the inequality
removing the highest number of points.

Approach 2 Modelize Problem 2 as a MILP problem itself
[Sasaki-Todo 17].

18 / 42

Our approach for Problem 2

[Sasaki-Todo 2017]: The smallest subset of inequalities does not
necessarily provide the overall best performance when running a
complete cipher modeling.

This auxiliary MILP problem can be too heavy when the initial set of
inequalities is large.

Our approach: Use Approach 1 for our applications and Approach 2 for
benchmarking reasons.

19 / 42

Our contributions

1 Different new heuristic methods for efficiently modeling large Sboxes

2 New better modelings for linear layers

20 / 42

New Sbox Modelings

Outline

1 New Sbox Modelings
Convex Hull Techniques
Logical condition techniques for 8-bit SBoxes
Covering the space with balls

2 New linear-layer modelings

3 Conclusion

21 / 42

New Sbox Modelings Convex Hull Techniques

Improved convex hull method for up to 12-bit functions

Compute the H-representation of the convex hull of all points a ∈ Fm
2

such that F (a) = 1.

⇒ Get a set of initial inequalities for F .

Idea: Compute other, potentially better*, linear inequalities from
this initial set by summing up some of them.

* Better = Inequalities removing more points.

If x ∈ Fm
2 satisfies the k inequalities C1, . . . , Ck :

ck0x0 + · · ·+ ckm−1xm−1 + bk ≥ 0,

then it also satisfies

(
k∑

i=1

ci0
)
x0 + · · · + (

k∑

i=1

cim−1

)
xm−1 +

k∑

i=1

bi ≥ 0

22 / 42

New Sbox Modelings Convex Hull Techniques

Produce meaningful inequalities

Most of the inequalities produced by randomly summing k inequalities are
not interesting.

But, if k hyperplanes of the H-representation share a vertex on the cube
{0, 1}m, (i.e. a possible transition), then the addition of the k

corresponding inequalities will probably yield an interesting new inequality.

23 / 42

New Sbox Modelings Convex Hull Techniques

Results on 4-bit Sboxes

Sbox # Inequalities Sbox # Inequalities

[SHW+14] [ST17] Our [SHW+14] [ST17] Our
Present 22 21 17 Serpent S0 23 21 17

Klein 22 21 19 Serpent S1 24 21 17

Twine 23 23 19 Serpent S2 25 21 18

Prince 26 22 19 Serpent S3 31 27 20

Piccolo 23 21 16 Serpent S4 26 23 19

MIBS 27 23 20 Serpent S5 25 23 19

LBlock S0 28 24 17 Serpent S6 22 21 17

LBlock S1 27 24 17 Serpent S7 30 27 20

LBlock S2 27 24 17 Lilliput − 23 19

LBlock S3 27 24 17 Minalpher − 22 19

LBlock S4 28 24 17 Midori S0 − 21 16

LBlock S5 27 24 17 Midori S1 − 22 20

LBlock S6 27 24 17 Rectangle − 21 17

LBlock S7 27 24 17 Skinny − 21 16

LBlock S8 28 24 17 Gift − − 17

LBlock S9 27 24 17 Pride − − 16
24 / 42

New Sbox Modelings Logical condition techniques for 8-bit SBoxes

Spaces of the form a⊕ Prec(u)

For u = (u0, u1, . . . , um−1) ∈ Fm
2 denote by

supp(u) = {i : ui = 1} ⊆ {0,m− 1}.

Prec(u) = {x ∈ Fm
2 : x � u},

where x � u means that xi ≤ ui for all i ∈ {0,m − 1}.

Example: u = (0110) : Prec(u) = {(0000), (0100), (0010), (0110)}.

Goal: Derive inequalities to remove spaces of the form a⊕Prec(u).

25 / 42

New Sbox Modelings Logical condition techniques for 8-bit SBoxes

Inequalities for such spaces

Proposition: Let a, u ∈ Fm
2 such that supp(a)

⋂
supp(u) = ∅ and let

I = {0,m − 1} \
(
supp(a)

⋃
supp(u)

)
. For all x ∈ Fm

2 ,

−
∑

i∈supp(a)

xi +
∑

i∈I

xi ≥ 1− wt(a) ⇔ x 6∈ a⊕ Prec(u).

26 / 42

New Sbox Modelings Logical condition techniques for 8-bit SBoxes

Inequalities for such spaces

Proposition: Let a, u ∈ Fm
2 such that supp(a)

⋂
supp(u) = ∅ and let

I = {0,m − 1} \
(
supp(a)

⋃
supp(u)

)
. For all x ∈ Fm

2 ,

−
∑

i∈supp(a)

xi +
∑

i∈I

xi ≥ 1− wt(a) ⇔ x 6∈ a⊕ Prec(u).

Example: Let a = 0x1, u = 0x94 ∈ F8
2. Then,

Prec(u) = {0x0, 0x4, 0x10, 0x14, 0x80, 0x84, 0x90, 0x94}.

Further, as supp(a) = {0} and supp(u) = {2, 4, 7}, I = {1, 3, 5, 6}. The
equation

−x0 + x1 + x3 + x5 + x6 ≥ 0

removes the points

a⊕ Prec(u) = {0x1, 0x5, 0x11, 0x15, 0x81, 0x85, 0x91, 0x95}.

26 / 42

New Sbox Modelings Logical condition techniques for 8-bit SBoxes

Relation with the Quine McCluskey algorithm

The Quine-McCluskey (QM) algorithm has two steps:

1 Finding all prime implicants of the function.

2 Use a prime implicant chart to find the prime implicants that are
necessary to cover the function.

Remarks:

The first step of QM corresponds to finding all spaces a⊕ Prec(u)
(solving Problem 1).

The second step of QM, corresponds to Problem 2. The way it is
solved is very memory consuming and not efficient.

Our approach: Find all spaces a⊕ Prec(u) for solving Problem 1 together
with a greedy algorithm or a MILP-based algorithm for solving Problem 2.
⇒ Faster + potentially much less inequalities.

27 / 42

New Sbox Modelings Covering the space with balls

Balls and distorted balls

B(d, c) =
{
x ∈ Fm

2

∣
∣wt(x⊕ c) ≤ d

}

b

c = (1, 0, 0, 0)

b
(0, 0, 0, 0)

b (1, 1, 0, 0)

b

(1, 0, 1, 0)

b(1, 0, 0, 1) b

c = (1, 0, 0, 0)

bc
(0, 0, 0, 0)

(1, 1, 0, 0)b

(1, 0, 1, 0)

b(1, 0, 0, 1)

bc

B(1, c) = {(1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}.

All five points of the above ball can be removed by

(1− x0) + x1 + x2 + x3 ≥ 2.
28 / 42

New Sbox Modelings Covering the space with balls

Discard a ball of radius d

bb

b

b

b

b

b

b

b

b

b

Let c ∈ Fm
2 . The inequality

m−1∑

i=0

(1− ci)xi+ ci(1−xi) =

m−1∑

i=0

xi⊕ ci = wt(x⊕ c) ≥ d+1

removes all points in B(d, c).
29 / 42

New Sbox Modelings Covering the space with balls

Distorted balls

Be sure not to remove points a ∈ Fm
2 such that F (a) = 1 inside a ball.

Useful if the table of F is dense (many 1’s).

Exploit distorted balls!

Example: DB = B(1, (1, 0, 0, 0)) \ {(0, 0, 0, 0), (1, 0, 1, 0)}.

Inequality removing B(1, (1, 0, 0, 0)) : (1− x0) + x1 + x2 + x3 ≥ 2

The inequality
2(1− x0) + x1 + 2x2 + x3 ≥ 2

removes DB.

30 / 42

New Sbox Modelings Covering the space with balls

Inequality corresponding to a distorted ball

Let B(d, c) ⊂ Fm
2 and Q = (c⊕ Prec(q))

⋂
S(d, c). Lets a ∈ Qm such that

ai =

{
d+1
d

if qi = 1,
1 otherwise.

Then the inequality

m−1∑

i=0

ai
[
(1−ci)xi+ci(1−xi)

]
≥ d+1

removes all points in B(d, c)\Q.

31 / 42

New Sbox Modelings Covering the space with balls

Remove 3 distorted balls together

Example on PRESENT.

B(1, [0, 11]) = {[0, 11], [0, 10], [0, 9], [0, 15], [0, 3], [1, 11], [2, 11], [4, 11], [8, 11]},

B(1, [0, 15]) = {[0, 15], [0, 14], [0, 13], [0, 11], [0, 7], [1, 15], [2, 15], [4, 15], [8, 15]}

B(1, [0, 10]) = {[0, 10], [0, 11], [0, 8], [0, 14], [0, 2], [1, 10], [2, 10], [4, 10], [8, 10]}.

The inequality

3x0+4x1+4x2+6x3+2(1−y0)+3(1−y1)+y2+3(1−y3) ≥ 6

removes the 17 points of

(B(1, [0, 11])
⋃

B(1, [0, 15])
⋃

B(1, [0, 10]))\{[2, 10], [4, 10], [8, 10], [8, 11], [8, 15]}.

32 / 42

New Sbox Modelings Covering the space with balls

Results on 8-bit Sboxes

372

302

Skinny-128

Quine-

McCluskey

vs.

Combination

of our new 3

methods

8302

2882

AESAES

33 / 42

New linear-layer modelings

Outline

1 New Sbox Modelings
Convex Hull Techniques
Logical condition techniques for 8-bit SBoxes
Covering the space with balls

2 New linear-layer modelings

3 Conclusion

34 / 42

New linear-layer modelings

XOR modeling

The XOR operation is the central element of most diffusion layers.

Proposition. Modeling x0 ⊕ x1 ⊕ . . .⊕ xn−1 = 0
needs at least 2n−1 R-linear inequalities.

35 / 42

New linear-layer modelings

A better way to modelize a matrix M

A linear layer can be represented by a matrix M .






xn+1
...

x2n




 = M ·






x1
...
xn




 ⇒ (M |I)

︸ ︷︷ ︸

A

·






x1
...

x2n




 = 0.

First Approach: Model the equation given by each row of A with the
naive XOR modeling. ⇒ Inefficient

Idea: Since for any matrix P ∈ GLn(F2),Ker(P ·A) = KerA, find a
matrix P that minimizes

n∑

i=1

2wt(P ·A)i,⋆−1, (1)

where (P · A)i,⋆ is the i-th row of P ·A.
36 / 42

New linear-layer modelings

Application to SKINNY







1 0 1 1 1 0 0 0
1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 1







⇒







0 0 0 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 1







Naive modeling : 23 + 2 + 22 + 22 = 18 inequalities

New modeling : 14 inequalities

37 / 42

New linear-layer modelings

Changing the Sbox modeling for improving the linear one

Find a block-diagonal matrix Q, an invertible matrix P , minimizing
the modeling of

P · (M |I) ·






Q1

. . .

Q2b






Change S into Q−1
i ◦ S ◦Q−1

i+b for all i ∈ [1, b]

38 / 42

New linear-layer modelings

Results on different linear layers

Slide by Daniel Coggia.
39 / 42

Conclusion

Outline

1 New Sbox Modelings
Convex Hull Techniques
Logical condition techniques for 8-bit SBoxes
Covering the space with balls

2 New linear-layer modelings

3 Conclusion

40 / 42

Conclusion

Applications









. . . .

α . . .

. . . .

. . . .









r rounds
−→









. . . .

. . . .

. . β .

. . . .









628

339

5 rounds of AES

748

256

188

213

32 rounds of Skinny-128

18 32

Sbox

Linear

41 / 42

Conclusion

Open problems

Provide more efficient modelization techniques.

Understand what type of inequalities lead to a faster solving time.

Understand and influence the solving strategies used by the solver.

42 / 42

Conclusion

Open problems

Provide more efficient modelization techniques.

Understand what type of inequalities lead to a faster solving time.

Understand and influence the solving strategies used by the solver.

Thanks for your attention!

42 / 42

	New Sbox Modelings
	Convex Hull Techniques
	Logical condition techniques for 8-bit SBoxes
	Covering the space with balls

	New linear-layer modelings
	Conclusion

