
Schrodinger’s Squirrel

Formal security proofs in a post-quantum world

Charlie Jacomme
CISPA Helmholtz Center for Information Security

November 19, 2021

1

Formal Methods for Security and
Privacy

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ
It’s my life!

x è Ø 	 0(Z ♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è

Ø

	 0(Z ♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è

Ø

	 0(

Z

♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x

è Ø

	 0(

Z

♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x

è Ø 	

0(

Z

♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x

è Ø 	

0

(Z

♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	

0

(Z

♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	

0

(Z

♥

Þ

è Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	

0

(Z ♥Þ

è Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þ

è Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þè

Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þè

Þ 0

Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þè Þ

0

Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us!

2

The beautiful and frightening technological revolution

G ÿ

It’s my life!

x è Ø 	 0(Z ♥Þè Þ 0
Sacrifice privacy in exchange of services. . .

but our data is used against us! 2

Security and Privacy

Some people even need privacy to survive:

Reporters in dangerous countries.

Homosexual in countries where it is punished by law (still 69 in the world...).

Uighurs tracked through their smartphones in China.

If we can’t have privacy, nobody can

3

Security and Privacy

Security and Privacy Matter !

4

Security and Privacy

Security and Privacy Matter !
We need:

systems designed to provide security and privacy;

with guarantees that they do;

used in practice.

4

Security and Privacy

Security and Privacy Matter !
We need:

systems designed to provide security and privacy;

with guarantees that they do;

used in practice.

4

Security and Privacy

Security and Privacy Matter !
We need:

systems designed to provide security and privacy;

with guarantees that they do;

used in practice.

4

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The (first) difficulty

Hardware

ß

F

ÿ

OS

¢

ë

Implementation

?
C++
Java

Python
. . .

Primitives

C

RSA
Elliptic curves

. . .

Protocols

)
SSH
TLS
GPG
. . .

Users

¯

If any link of the chain is broken, everything is.

5

The goal

Since the 80’s
Provide guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

The goal

Since the 80’s
Provide formal guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

The goal

Since the 80’s
Provide formal guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

The goal

Since the 80’s
Provide formal guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

The goal

Since the 80’s
Provide formal guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

The goal

Since the 80’s
Provide formal guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

The goal

Since the 80’s
Provide formal guarantees on the protocol assuming that the other layers are secure.

↪→ a mathematical proof on an abstract model [Goldwasser,Micali,Dolev,Yao]

∀A. P || A |= φ

P - model of the protocol.

A - attacker model

φ - security property

6

Second Difficulty - The modeling

Compromise Model
Malwares, Keylogger

Phishing

Long-term/ephemeral key reveal

Computation Model
Turing Machines or inference rules

Assumptions on primitives (RSA)

Timing attacks

Attacker Model

Protocol Model
Optional behaviours or parameters

Modeling of parsing, serialization

Communications channels

Security Properties
Secrecy, PFS, PCS

Authentication

Unlinkability

7

Second Difficulty - The modeling

Compromise Model
Malwares, Keylogger

Phishing

Long-term/ephemeral key reveal

Computation Model
Turing Machines or inference rules

Assumptions on primitives (RSA)

Timing attacks

Attacker Model

Protocol Model
Optional behaviours or parameters

Modeling of parsing, serialization

Communications channels

Security Properties
Secrecy, PFS, PCS

Authentication

Unlinkability

7

Second Difficulty - The modeling

Compromise Model
Malwares, Keylogger

Phishing

Long-term/ephemeral key reveal

Computation Model
Turing Machines or inference rules

Assumptions on primitives (RSA)

Timing attacks

Attacker Model

Protocol Model
Optional behaviours or parameters

Modeling of parsing, serialization

Communications channels

Security Properties
Secrecy, PFS, PCS

Authentication

Unlinkability

7

Second Difficulty - The modeling

Compromise Model
Malwares, Keylogger

Phishing

Long-term/ephemeral key reveal

Computation Model
Turing Machines or inference rules

Assumptions on primitives (RSA)

Timing attacks

Attacker Model

Protocol Model
Optional behaviours or parameters

Modeling of parsing, serialization

Communications channels

Security Properties
Secrecy, PFS, PCS

Authentication

Unlinkability

7

Second Difficulty - The modeling

Compromise Model
Malwares, Keylogger

Phishing

Long-term/ephemeral key reveal

Computation Model
Turing Machines or inference rules

Assumptions on primitives (RSA)

Timing attacks

Attacker Model

Protocol Model
Optional behaviours or parameters

Modeling of parsing, serialization

Communications channels

Security Properties
Secrecy, PFS, PCS

Authentication

Unlinkability

7

The goal

Strong guarantees
Get proofs of security, with all modelings as realistic as possible.

It is very very very very very difficult
We want to prove over realistic models that something is impossible, even when
considering all possible attackers.

Undecidable;

complexity of proofs grows very quickly, and cannot be managed by hand.

8

The goal

Strong guarantees
Get proofs of security, with all modelings as realistic as possible.

It is very very very very very difficult
We want to prove over realistic models that something is impossible, even when
considering all possible attackers.

Undecidable;

complexity of proofs grows very quickly, and cannot be managed by hand.

8

The solution

Computer-Aided Cryptography (since 2000)
Tools that help us carry-out, verify or automate the proofs.

But. . .

Inherent trade-off between the realism and automation/proof-size;

no single tool will be the best at everything.

9

The solution

Computer-Aided Cryptography (since 2000)
Tools that help us carry-out, verify or automate the proofs.

But. . .

Inherent trade-off between the realism and automation/proof-size;

no single tool will be the best at everything.

9

The solution

Computer-Aided Cryptography (since 2000)
Tools that help us carry-out, verify or automate the proofs.

But. . .

Inherent trade-off between the realism and automation/proof-size;

no single tool will be the best at everything.

9

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools

(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines
Compromise Many Few

Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines
Compromise Many Few

Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines

Compromise Many Few
Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines
Compromise Many Few

Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines
Compromise Many Few

Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines
Compromise Many Few

Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

The landscape of computer-aided cryptography

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, Squirrel . . .)

Attacker Fixed set of computations Turing Machines
Compromise Many Few

Protocol Full specification Core parts in isolation

State of the art

Many tools used successfully, both to prove security or discover new vulnerabilities
on complex systems.

Still many limitations, and still very difficult to work on realistic models.

10

What I have been doing

Theory - Make proofs easier for realistic models

Composition results to cut computational and symbolic proofs into modular pieces;
[Comon, J., Scerri - CCS’20]

Automation of basic proofs steps in the computational world;
[Barthe, J., Kremer - LICS’20, TOCL] & [BGJKS - CSF’19] & [BFGGJS - CCS’18]

A new computational tool allowing for easier proofs of complex protocols;
Squirrel Prover [Baelde, Delaune, J., Koutsos, Moreau - S&P’21]

Practice - Actually make proofs for realistic models

Extensive analysis in Proverif of multi-factor authentication;
6000 scenarios generated and verified in 5 minutes [Kremer, J. - CSF’18, TOPS]

Modular analysis of SSH in Squirrel, with optional feature of agent forwarding;
Carried out first in the composition paper and then in the Squirrel one.

11

What I have been doing

Theory - Make proofs easier for realistic models

Composition results to cut computational and symbolic proofs into modular pieces;
[Comon, J., Scerri - CCS’20]

Automation of basic proofs steps in the computational world;
[Barthe, J., Kremer - LICS’20, TOCL] & [BGJKS - CSF’19] & [BFGGJS - CCS’18]

A new computational tool allowing for easier proofs of complex protocols;
Squirrel Prover [Baelde, Delaune, J., Koutsos, Moreau - S&P’21]

Practice - Actually make proofs for realistic models

Extensive analysis in Proverif of multi-factor authentication;
6000 scenarios generated and verified in 5 minutes [Kremer, J. - CSF’18, TOPS]

Modular analysis of SSH in Squirrel, with optional feature of agent forwarding;
Carried out first in the composition paper and then in the Squirrel one.

11

What I have been doing

Theory - Make proofs easier for realistic models

Composition results to cut computational and symbolic proofs into modular pieces;
[Comon, J., Scerri - CCS’20]

Automation of basic proofs steps in the computational world;
[Barthe, J., Kremer - LICS’20, TOCL] & [BGJKS - CSF’19] & [BFGGJS - CCS’18]

A new computational tool allowing for easier proofs of complex protocols;
Squirrel Prover [Baelde, Delaune, J., Koutsos, Moreau - S&P’21]

Practice - Actually make proofs for realistic models

Extensive analysis in Proverif of multi-factor authentication;
6000 scenarios generated and verified in 5 minutes [Kremer, J. - CSF’18, TOPS]

Modular analysis of SSH in Squirrel, with optional feature of agent forwarding;
Carried out first in the composition paper and then in the Squirrel one.

11

What I have been doing

Theory - Make proofs easier for realistic models

Composition results to cut computational and symbolic proofs into modular pieces;
[Comon, J., Scerri - CCS’20]

Automation of basic proofs steps in the computational world;
[Barthe, J., Kremer - LICS’20, TOCL] & [BGJKS - CSF’19] & [BFGGJS - CCS’18]

A new computational tool allowing for easier proofs of complex protocols;
Squirrel Prover [Baelde, Delaune, J., Koutsos, Moreau - S&P’21]

Practice - Actually make proofs for realistic models

Extensive analysis in Proverif of multi-factor authentication;
6000 scenarios generated and verified in 5 minutes [Kremer, J. - CSF’18, TOPS]

Modular analysis of SSH in Squirrel, with optional feature of agent forwarding;
Carried out first in the composition paper and then in the Squirrel one.

11

What I have been doing

Theory - Make proofs easier for realistic models

Composition results to cut computational and symbolic proofs into modular pieces;
[Comon, J., Scerri - CCS’20]

Automation of basic proofs steps in the computational world;
[Barthe, J., Kremer - LICS’20, TOCL] & [BGJKS - CSF’19] & [BFGGJS - CCS’18]

A new computational tool allowing for easier proofs of complex protocols;
Squirrel Prover [Baelde, Delaune, J., Koutsos, Moreau - S&P’21]

Practice - Actually make proofs for realistic models

Extensive analysis in Proverif of multi-factor authentication;
6000 scenarios generated and verified in 5 minutes [Kremer, J. - CSF’18, TOPS]

Modular analysis of SSH in Squirrel, with optional feature of agent forwarding;
Carried out first in the composition paper and then in the Squirrel one.

11

What I have been doing

Theory - Make proofs easier for realistic models

Composition results to cut computational and symbolic proofs into modular pieces;
[Comon, J., Scerri - CCS’20]

Automation of basic proofs steps in the computational world;
[Barthe, J., Kremer - LICS’20, TOCL] & [BGJKS - CSF’19] & [BFGGJS - CCS’18]

A new computational tool allowing for easier proofs of complex protocols;
Squirrel Prover [Baelde, Delaune, J., Koutsos, Moreau - S&P’21]

Practice - Actually make proofs for realistic models

Extensive analysis in Proverif of multi-factor authentication;
6000 scenarios generated and verified in 5 minutes [Kremer, J. - CSF’18, TOPS]

Modular analysis of SSH in Squirrel, with optional feature of agent forwarding;
Carried out first in the composition paper and then in the Squirrel one. 11

Today’s presentation

A new attacker model
The tools should be able to provide guarantees against quantum attackers.

What changes with a quantum attackers?

Can tools already provide guarantees about them?

If not, what can we do to fix them?

12

Today’s presentation

A new attacker model
The tools should be able to provide guarantees against quantum attackers.

What changes with a quantum attackers?

Can tools already provide guarantees about them?

If not, what can we do to fix them?

12

Today’s presentation

A new attacker model
The tools should be able to provide guarantees against quantum attackers.

What changes with a quantum attackers?

Can tools already provide guarantees about them?

If not, what can we do to fix them?

12

Today’s presentation

A new attacker model
The tools should be able to provide guarantees against quantum attackers.

What changes with a quantum attackers?

Can tools already provide guarantees about them?

If not, what can we do to fix them?

12

What is the fuss about quantum
attackers?

Quantum computers

When?
No scaling quantum computers

yet. . .

The issue
Quantum computers allow for a significant speed up for solving many problems
⇒ breaks RSA, computes discrete logarithms. . .

↪→ We need new primitives, new protocols and new proofs.

13

Quantum computers

When?
No scaling quantum computers yet. . .

The issue
Quantum computers allow for a significant speed up for solving many problems
⇒ breaks RSA, computes discrete logarithms. . .

↪→ We need new primitives, new protocols and new proofs.

13

Quantum computers

When?
No scaling quantum computers yet. . .

The issue
Quantum computers allow for a significant speed up for solving many problems
⇒ breaks RSA, computes discrete logarithms. . .

↪→ We need new primitives, new protocols and new proofs.

13

Quantum computers

When?
No scaling quantum computers yet. . .

The issue
Quantum computers allow for a significant speed up for solving many problems
⇒ breaks RSA, computes discrete logarithms. . .

↪→ We need new primitives, new protocols and new proofs.

13

Attacker models

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, . . .)

Attacker Fixed set of possible computations Turing Machines
on abstract messages on bitstrings

Post-quantum? Abstract reasoning still valid

Quantum Turing Machines

14

Attacker models

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, . . .)

Attacker Fixed set of possible computations Turing Machines
on abstract messages on bitstrings

Post-quantum? Abstract reasoning still valid

Quantum Turing Machines

14

Attacker models

Symbolic Tools Computational Tools
(Proverif,Tamarin,Deepsec, . . .) (EasyCrypt, CryptoVerif, . . .)

Attacker Fixed set of possible computations Turing Machines
on abstract messages on bitstrings

Post-quantum? Abstract reasoning still valid Quantum Turing Machines

14

A first look at classical computational proofs

Computational
Hardness Assumption

Protocol
Security

Attacker on
Protocol

Attacker on Assumption
reduction

15

A first look at classical computational proofs

Computational
Hardness Assumption

Protocol
Security

Attacker on
Protocol

Attacker on Assumption
reduction

15

A first look at classical computational proofs

Computational
Hardness Assumption

Protocol
Security

Attacker on
Protocol

Attacker on Assumption
reduction

15

Classical Proofs

Two ingredients

An assumption
(a computational assumption that holds for any attacker, e.g. RSA is unbreakable)

A reduction
(the construction of a new attacker using the one against the assumption,

similar to NP-hardness proofs or undecidability proofs)

A tale of two issues

No drop in quantum replacement for some classical assumptions (DDH).

There are ways to manipulate a classical attacker that cannot be done with a
quantum one.

16

Classical Proofs

Two ingredients

An assumption
(a computational assumption that holds for any attacker, e.g. RSA is unbreakable)

A reduction
(the construction of a new attacker using the one against the assumption,

similar to NP-hardness proofs or undecidability proofs)

A tale of two issues

No drop in quantum replacement for some classical assumptions (DDH).

There are ways to manipulate a classical attacker that cannot be done with a
quantum one.

16

Classical Proofs

Two ingredients

An assumption over quantum computers
(a computational assumption that holds for any attacker, e.g. RSA is unbreakable)

A reduction over quantum computers
(the construction of a new attacker using the one against the assumption,

similar to NP-hardness proofs or undecidability proofs)

A tale of two issues

No drop in quantum replacement for some classical assumptions (DDH).

There are ways to manipulate a classical attacker that cannot be done with a
quantum one.

16

Classical Proofs

Two ingredients

An assumption over quantum computers
(a computational assumption that holds for any attacker, e.g. RSA is unbreakable)

A reduction over quantum computers
(the construction of a new attacker using the one against the assumption,

similar to NP-hardness proofs or undecidability proofs)

A tale of two issues

No drop in quantum replacement for some classical assumptions (DDH).

There are ways to manipulate a classical attacker that cannot be done with a
quantum one.

16

Classical Proofs

Two ingredients

An assumption over quantum computers
(a computational assumption that holds for any attacker, e.g. RSA is unbreakable)

A reduction over quantum computers
(the construction of a new attacker using the one against the assumption,

similar to NP-hardness proofs or undecidability proofs)

A tale of two issues

No drop in quantum replacement for some classical assumptions (DDH).

There are ways to manipulate a classical attacker that cannot be done with a
quantum one.

16

What is a classical attacker?

Probabilistic attacker model

A deterministic computer A with a random string ρ and inputs ~i

A(ρ,~i)

Allows to simulate weird executions
Run twice the attacker with the same source of randomness on two distinct inputs:
A(ρ,~i1) and A(ρ,~i2)

Impossible computation with a quantum computer

17

What is a classical attacker?

Probabilistic attacker model

A deterministic computer A with a random string ρ and inputs ~i

A(ρ,~i)

Allows to simulate weird executions
Run twice the attacker with the same source of randomness on two distinct inputs:
A(ρ,~i1) and A(ρ,~i2)

Impossible computation with a quantum computer

17

What is a classical attacker?

Probabilistic attacker model

A deterministic computer A with a random string ρ and inputs ~i

A(ρ,~i)

Allows to simulate weird executions
Run twice the attacker with the same source of randomness on two distinct inputs:
A(ρ,~i1) and A(ρ,~i2)

Impossible computation with a quantum computer

17

What is a quantum attacker?

It is impossible to

Run twice a quantum computer with fixed randomness

Duplicate a quantum state (no-cloning theorem)

↪→ Reductions must not use techniques relying on this (e.g., rewinding)

18

What is a quantum attacker?

It is impossible to

Run twice a quantum computer with fixed randomness

Duplicate a quantum state (no-cloning theorem)

↪→ Reductions must not use techniques relying on this (e.g., rewinding)

18

What is a quantum attacker?

It is impossible to

Run twice a quantum computer with fixed randomness

Duplicate a quantum state (no-cloning theorem)

↪→ Reductions must not use techniques relying on this (e.g., rewinding)

18

What is a quantum attacker?

It is impossible to

Run twice a quantum computer with fixed randomness

Duplicate a quantum state (no-cloning theorem)

↪→ Reductions must not use techniques relying on this (e.g., rewinding)

18

Quantum-sound reductions

Many pitfalls
Must be careful about

manipulations of the attacker’s state;

mentions of the attacker’s randomness;

arguments about numbers of queries made to an oracle (QROM);

arguments about complexity classes.

↪→ The computational tools do this kind of things. . .

19

Quantum-sound reductions

Many pitfalls
Must be careful about

manipulations of the attacker’s state;

mentions of the attacker’s randomness;

arguments about numbers of queries made to an oracle (QROM);

arguments about complexity classes.

↪→ The computational tools do this kind of things. . .

19

Quantum-sound reductions

Many pitfalls
Must be careful about

manipulations of the attacker’s state;

mentions of the attacker’s randomness;

arguments about numbers of queries made to an oracle (QROM);

arguments about complexity classes.

↪→ The computational tools do this kind of things. . .

19

Contributions

Our contributions1

Take the BC logic - a logic for deriving computational security guarantees

Make it sound for quantum attackers

Take the Squirrel Prover - an interactive prover for the BC logic

Extend it to support the adapted PQ sound logic

Use it on some new protocols - KEM based post-quantum key exchanges

1Joint work with Cas Cremers, Caroline Fontaine, and discussions with Hubert Comon.

20

Contributions

Our contributions1

Take the BC logic - a logic for deriving computational security guarantees

Make it sound for quantum attackers

Take the Squirrel Prover - an interactive prover for the BC logic

Extend it to support the adapted PQ sound logic

Use it on some new protocols - KEM based post-quantum key exchanges

1Joint work with Cas Cremers, Caroline Fontaine, and discussions with Hubert Comon.

20

Contributions

Our contributions1

Take the BC logic - a logic for deriving computational security guarantees

Make it sound for quantum attackers

Take the Squirrel Prover - an interactive prover for the BC logic

Extend it to support the adapted PQ sound logic

Use it on some new protocols - KEM based post-quantum key exchanges

1Joint work with Cas Cremers, Caroline Fontaine, and discussions with Hubert Comon.

20

Contributions

Our contributions1

Take the BC logic - a logic for deriving computational security guarantees

Make it sound for quantum attackers

Take the Squirrel Prover - an interactive prover for the BC logic

Extend it to support the adapted PQ sound logic

Use it on some new protocols - KEM based post-quantum key exchanges

1Joint work with Cas Cremers, Caroline Fontaine, and discussions with Hubert Comon.

20

Contributions

Our contributions1

Take the BC logic - a logic for deriving computational security guarantees

Make it sound for quantum attackers

Take the Squirrel Prover - an interactive prover for the BC logic

Extend it to support the adapted PQ sound logic

Use it on some new protocols - KEM based post-quantum key exchanges

1Joint work with Cas Cremers, Caroline Fontaine, and discussions with Hubert Comon.

20

Contributions

Our contributions1

Take the BC logic - a logic for deriving computational security guarantees

Make it sound for quantum attackers

Take the Squirrel Prover - an interactive prover for the BC logic

Extend it to support the adapted PQ sound logic

Use it on some new protocols - KEM based post-quantum key exchanges

1Joint work with Cas Cremers, Caroline Fontaine, and discussions with Hubert Comon.

20

Related work

Some related work

John Watrous. Zero-knowledge against quantum attacks.
↪→ Identified the no cloning theorem as an issue.

Fang Song. A note on quantum security for post-quantum cryptography.

Tommaso Gagliardoni. Quantum Security of Cryptographic Primitives.
↪→ Identified classes of valid reductions for pen and paper proofs.

EasyPQC - [BBFGHKSWZ - CCS’21] (parallel work)
↪→ Post-quantum sound EasyCrypt - hard to scale to protocols

21

Related work

Some related work

John Watrous. Zero-knowledge against quantum attacks.
↪→ Identified the no cloning theorem as an issue.

Fang Song. A note on quantum security for post-quantum cryptography.

Tommaso Gagliardoni. Quantum Security of Cryptographic Primitives.
↪→ Identified classes of valid reductions for pen and paper proofs.

EasyPQC - [BBFGHKSWZ - CCS’21] (parallel work)
↪→ Post-quantum sound EasyCrypt - hard to scale to protocols

21

Related work

Some related work

John Watrous. Zero-knowledge against quantum attacks.
↪→ Identified the no cloning theorem as an issue.

Fang Song. A note on quantum security for post-quantum cryptography.

Tommaso Gagliardoni. Quantum Security of Cryptographic Primitives.
↪→ Identified classes of valid reductions for pen and paper proofs.

EasyPQC - [BBFGHKSWZ - CCS’21] (parallel work)
↪→ Post-quantum sound EasyCrypt - hard to scale to protocols

21

A post-quantum BC logic

The BC logic

The BC logic2

A first-order logic to prove the security of protocols.

↪→ a proof implies the existence of a reduction.

A computationally sound logic
Three main ingredients:

terms, and their interpretation so that terms can syntactically describe all
behaviours of a protocol;

↪→ if there exists an attack on the protocol, we can see it on the terms.

logical predicates and rules (with axioms about e.g. RSA) to reason over the terms;

prove the soundness of the rules, i.e., they correspond to valid reduction.
↪→ if there is an attack on the protocol, there is an attack against the axioms.

2[Bana,Comon-CCS’14] 22

The BC logic

The BC logic2

A first-order logic to prove the security of protocols.
↪→ a proof implies the existence of a reduction.

A computationally sound logic
Three main ingredients:

terms, and their interpretation so that terms can syntactically describe all
behaviours of a protocol;

↪→ if there exists an attack on the protocol, we can see it on the terms.

logical predicates and rules (with axioms about e.g. RSA) to reason over the terms;

prove the soundness of the rules, i.e., they correspond to valid reduction.
↪→ if there is an attack on the protocol, there is an attack against the axioms.

2[Bana,Comon-CCS’14] 22

The BC logic

The BC logic2

A first-order logic to prove the security of protocols.
↪→ a proof implies the existence of a reduction.

A computationally sound logic
Three main ingredients:

terms, and their interpretation so that terms can syntactically describe all
behaviours of a protocol;

↪→ if there exists an attack on the protocol, we can see it on the terms.

logical predicates and rules (with axioms about e.g. RSA) to reason over the terms;

prove the soundness of the rules, i.e., they correspond to valid reduction.
↪→ if there is an attack on the protocol, there is an attack against the axioms.

2[Bana,Comon-CCS’14] 22

The BC logic

The BC logic2

A first-order logic to prove the security of protocols.
↪→ a proof implies the existence of a reduction.

A computationally sound logic
Three main ingredients:

terms, and their interpretation so that terms can syntactically describe all
behaviours of a protocol;

↪→ if there exists an attack on the protocol, we can see it on the terms.

logical predicates and rules (with axioms about e.g. RSA) to reason over the terms;

prove the soundness of the rules, i.e., they correspond to valid reduction.
↪→ if there is an attack on the protocol, there is an attack against the axioms.

2[Bana,Comon-CCS’14] 22

The BC logic

The BC logic2

A first-order logic to prove the security of protocols.
↪→ a proof implies the existence of a reduction.

A computationally sound logic
Three main ingredients:

terms, and their interpretation so that terms can syntactically describe all
behaviours of a protocol;

↪→ if there exists an attack on the protocol, we can see it on the terms.

logical predicates and rules (with axioms about e.g. RSA) to reason over the terms;

prove the soundness of the rules, i.e., they correspond to valid reduction.
↪→ if there is an attack on the protocol, there is an attack against the axioms.

2[Bana,Comon-CCS’14] 22

Going post-quantum

Make it post-quantum sound

New primitives;
↪→ design new axioms and rules.

straightforward

Verify the post-quantum soundness of the rules;
↪→ do we manipulate the attacker in a bad way? No

Verify the term interpretation;
↪→ do we manipulate the attacker in a bad way? Yes

23

Going post-quantum

Make it post-quantum sound

New primitives;
↪→ design new axioms and rules.

straightforward

Verify the post-quantum soundness of the rules;
↪→ do we manipulate the attacker in a bad way?

No

Verify the term interpretation;
↪→ do we manipulate the attacker in a bad way? Yes

23

Going post-quantum

Make it post-quantum sound

New primitives;
↪→ design new axioms and rules.

straightforward

Verify the post-quantum soundness of the rules;
↪→ do we manipulate the attacker in a bad way?

No

Verify the term interpretation;
↪→ do we manipulate the attacker in a bad way?

Yes

23

Going post-quantum

Make it post-quantum sound

New primitives;
↪→ design new axioms and rules. straightforward

Verify the post-quantum soundness of the rules;
↪→ do we manipulate the attacker in a bad way?

No

Verify the term interpretation;
↪→ do we manipulate the attacker in a bad way?

Yes

23

Going post-quantum

Make it post-quantum sound

New primitives;
↪→ design new axioms and rules. straightforward

Verify the post-quantum soundness of the rules;
↪→ do we manipulate the attacker in a bad way? No

Verify the term interpretation;
↪→ do we manipulate the attacker in a bad way?

Yes

23

Going post-quantum

Make it post-quantum sound

New primitives;
↪→ design new axioms and rules. straightforward

Verify the post-quantum soundness of the rules;
↪→ do we manipulate the attacker in a bad way? No

Verify the term interpretation;
↪→ do we manipulate the attacker in a bad way? Yes

23

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η

sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η)

att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk)

enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t)

att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

The BC logic

The BC logic3

Protocols are now expressed only with terms, i.e., purely syntactic construct, where
everything becomes pure functional calls.

Classical proofs BC terms

sk
$←− {0, 1}η sk

m
$←− A(1η) att0()

t
$←− enc(m, sk) enc(att0(), r, sk)

x
$←− A(t) att1(enc(att0(), r, sk))

3[Bana,Comon-CCS’14]

24

From protocols to terms

A protocol

new sk;
in(x);
if x = sk then
out(ko)

else
out(ok)

Becomes a term

if (att0() = sk) then ko else ok

25

From protocols to terms

A protocol

new sk;
in(x);
if x = sk then
out(ko)

else
out(ok)

Becomes a term

if (att0() = sk) then ko else ok

25

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind
(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind
(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind
(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind
(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind
(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind
(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind

(att0() = sk) ∼ false

Refl
ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f

=ind

(att0() = sk) ∼ false

Refl

ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f
=ind

(att0() = sk) ∼ false

Refl

ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

Some rules

Refl

u ∼ u

=ind

(t
.
= n) ∼ false

when n does
not occur in t

If-f
φ ∼ false u ∼ w

if φ then u else v ∼ w

If-f
=ind

(att0() = sk) ∼ false
Refl

ok ∼ ok

if att0() = sk then ko else ok ∼ ok

26

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(att0(), r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(

att0()

, r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(

enc(att0(), r, sk)

), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(

att1(enc(att0(), r, sk))

, r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(att0(), r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(att0(), r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(att0(), r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.

In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(att0(), r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.
In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0

27

But wait. . .

Does this allows to capture real life behaviours?
A protocol where we encrypt two consecutive attacker chosen values:

enc(att1(enc(att0(), r, sk)), r′, sk)

The logic quantifies over all sets of potential values of att1 and att0
↪→ all possible Turing machines Tatt0 and Tatt1 , and thus all attackers.

But. . .

In the real world, we have a stateful interactive probabilistic attacker A.
In the BC world, we have two stateless (because a call to atti must be pure) and
independent deterministic attackers Tatti that share a source of randomness.

↪→ Solved by specifying that Tatt1 always starts by recomputing the state of Tatt0 27

Real world interaction vs BC interaction

We compute twice A0(ρr , η) to reconstruct its
state.

Impossible with a quantum attacker

28

Real world interaction vs BC interaction

We compute twice A0(ρr , η) to reconstruct its
state.

Impossible with a quantum attacker

28

Real world interaction vs BC interaction

We compute twice A0(ρr , η) to reconstruct its
state.

Impossible with a quantum attacker

28

Real world interaction vs BC interaction

We compute twice A0(ρr , η) to reconstruct its
state.

Impossible with a quantum attacker
28

Going post-quantum

First issue
Behind the curtain, the interpretation of terms crucially rely on two facts:

we can see a probabilistic attacker as some deterministic A(1η, ρr),
and run it multiple times with the same randomness to reconstruct internal states.

The two impossible operations with a quantum attacker!

Our main contribution
An interpretation sound for interactive black-box attackers, where the interpretation
directly depends a single interactive Turing Machine TA, instead of many Tatti .

29

Going post-quantum

First issue
Behind the curtain, the interpretation of terms crucially rely on two facts:

we can see a probabilistic attacker as some deterministic A(1η, ρr),
and run it multiple times with the same randomness to reconstruct internal states.

The two impossible operations with a quantum attacker!

Our main contribution
An interpretation sound for interactive black-box attackers, where the interpretation
directly depends a single interactive Turing Machine TA, instead of many Tatti .

29

Going post-quantum

First issue
Behind the curtain, the interpretation of terms crucially rely on two facts:

we can see a probabilistic attacker as some deterministic A(1η, ρr),
and run it multiple times with the same randomness to reconstruct internal states.

The two impossible operations with a quantum attacker!

Our main contribution
An interpretation sound for interactive black-box attackers, where the interpretation
directly depends a single interactive Turing Machine TA, instead of many Tatti .

29

New (natural) interpretation

But the old rules break down. . .

att0(sk), if att1() = sk then ko else ok

∼
att0(sk), ok

30

New (natural) interpretation

But the old rules break down. . .

att0(sk), if att1() = sk then ko else ok

∼
att0(sk), ok

30

New (natural) interpretation

But the old rules break down. . .

att0(sk), if att1() = sk then ko else ok

∼
att0(sk), ok

30

New (natural) interpretation

But the old rules break down. . .

att0(sk), if att1() = sk then ko else ok
∼

att0(sk), ok

30

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?
↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?
↪→ att1 should depend on ok , as the machine that will interpret it will have

seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?

↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?
↪→ att1 should depend on ok , as the machine that will interpret it will have

seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?
↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?
↪→ att1 should depend on ok , as the machine that will interpret it will have

seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?
↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?

↪→ att1 should depend on ok , as the machine that will interpret it will have
seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?
↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?
↪→ att1 should depend on ok , as the machine that will interpret it will have

seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?
↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?
↪→ att1 should depend on ok , as the machine that will interpret it will have

seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

If it could have been that simple. . .

A cascade of changes

What is the meaning of the sequence (att1(ok), att1(ko))?
↪→ we must forbid such things, that model a rewinding

What is the meaning of the sequence (att0(ok), att1())?
↪→ att1 should depend on ok , as the machine that will interpret it will have

seen it in the first step.

What is the validity of the formula
(
att0()

.
= n

)
∼

(
att1(att0())

.
= n

)
?

↪→ he single interactive attacker will know how many time it was called on
both sides!

31

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;
∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;
∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u

′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .
∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;

∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;
∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u

′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .
∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;
∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;
∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u

′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .
∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;
∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;

∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u
′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .
∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;
∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;
∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u

′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .
∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;
∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;
∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u

′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .

∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

Syntactic conditions
A set of three simple syntactic conditions over terms and formulas.

Consistency - all occurrences of a atti for some i occurs with the same arguments;
∀~t, atti (x) ∈ ~t ∧ atti (y) ∈ ~t ⇒ x = y

Monotonicity - inputs of atti are a prefix of the inputs of attj , j > i ;
∀~t, i < j , atti (u1, . . . , ui) ∈ ~t ∧ attj(u′1, . . . , u

′
j) ∈ ~t ⇒ u1 = u′1 ∧ · · · ∧ ui = u′i

Balance - Same number of calls to the attacker on both sides of every ~u ∼ ~v .
∀i , atti ∈ ~u ⇔ atti ∈ ~v

32

Our solution

The conditions
Those specific three conditions were chosen because they are:

Necessary, otherwise one can write terms that don’t have any interpretation in the
quantum world;

Sufficient to obtain the soundness of the BC logic;

Simple and syntactic, so we were able to integrate them inside Squirrel with a few
hundred lines of code, only at the cost of a small expressivity loss.

33

Our solution

The conditions
Those specific three conditions were chosen because they are:

Necessary, otherwise one can write terms that don’t have any interpretation in the
quantum world;

Sufficient to obtain the soundness of the BC logic;

Simple and syntactic, so we were able to integrate them inside Squirrel with a few
hundred lines of code, only at the cost of a small expressivity loss.

33

Our solution

The conditions
Those specific three conditions were chosen because they are:

Necessary, otherwise one can write terms that don’t have any interpretation in the
quantum world;

Sufficient to obtain the soundness of the BC logic;

Simple and syntactic, so we were able to integrate them inside Squirrel with a few
hundred lines of code, only at the cost of a small expressivity loss.

33

Our solution

The conditions
Those specific three conditions were chosen because they are:

Necessary, otherwise one can write terms that don’t have any interpretation in the
quantum world;

Sufficient to obtain the soundness of the BC logic;

Simple and syntactic, so we were able to integrate them inside Squirrel with a few
hundred lines of code, only at the cost of a small expressivity loss.

33

What is Squirrel

In a nut: an interactive prover for the BC logic

Relies on a meta-logic to allow for mechanized proofs of protocol for an
unbounded number of sessions;

gives computational guarantees;

appears to be usable, and slowly starting to scale to more and more complex
protocols.

Some figures

5 people core team: David Baelde, Stéphanie Delaune, Charlie J., Adrien Koutsos,
Solène Moreau (and expanding)

30 000 lines of code and celebrating our 2 000 commit!

about 15 real life case studies of protocols

34

What is Squirrel

In a nut: an interactive prover for the BC logic

Relies on a meta-logic to allow for mechanized proofs of protocol for an
unbounded number of sessions;

gives computational guarantees;

appears to be usable, and slowly starting to scale to more and more complex
protocols.

Some figures

5 people core team: David Baelde, Stéphanie Delaune, Charlie J., Adrien Koutsos,
Solène Moreau (and expanding)

30 000 lines of code and celebrating our 2 000 commit!

about 15 real life case studies of protocols
34

Implementation and Case-studies

Protocol LoC Assumptions Security properties
Key exchange protocols

IkeV1psk 680 PRF,EUF-CMA Strong Secrecy & Authentication
IkeV2sign

psk 300 PRF,EUF-CMA Strong Secrecy & Authentication
KEBCGNP 355 PRF, IND-CCA,XOR Strong Secrecy & Implicit Authentication
KEFSXY 660 PRF, IND-CCA,XOR Strong Secrecy & Implicit Authentication
SC-AKE 650 PRF, IND-CCA, SUF-CMA,XOR Strong Secrecy & Authentication

Proving post-quantum soundness of Squirrelcase studies
Basic Hash 100 PRF,EUF-CMA Authentication & Unlinkability
Hash Lock 130 PRF,EUF-CMA Authentication & Unlinkability
LAK (with pairs) 250 PRF,EUF-CMA Authentication & Unlinkability
MW 300 PRF,EUF-CMA,XOR Authentication & Unlinkability
Feldhofer 270 ENC-KP, INT-CTXT Authentication & Unlinkability
Private Authentication 100 IND-CCA,ENC-KP Anonymity

35

What’s next?

Recap

Our contribution
The first interactive protocol prover that also provides post-quantum guarantees.

Limitation
Our key-exchange case-study do not cover any complex properties or compromise
model, and there are no clear framework to prove key-exchanges in Squirrel.

Natural next step
Foundations for proving Key-Exchanges in Squirrel:

Define how to express complex properties such as PFS or PCS in Squirrel, and
simplified with our composition result.

Link proofs in Squirrel with existing framework (BR, CK,eCK,. . .)

Perform an extensive case-study (KEMTLS)

36

Recap

Our contribution
The first interactive protocol prover that also provides post-quantum guarantees.

Limitation
Our key-exchange case-study do not cover any complex properties or compromise
model, and there are no clear framework to prove key-exchanges in Squirrel.

Natural next step
Foundations for proving Key-Exchanges in Squirrel:

Define how to express complex properties such as PFS or PCS in Squirrel, and
simplified with our composition result.

Link proofs in Squirrel with existing framework (BR, CK,eCK,. . .)

Perform an extensive case-study (KEMTLS)

36

Recap

Our contribution
The first interactive protocol prover that also provides post-quantum guarantees.

Limitation
Our key-exchange case-study do not cover any complex properties or compromise
model, and there are no clear framework to prove key-exchanges in Squirrel.

Natural next step
Foundations for proving Key-Exchanges in Squirrel:

Define how to express complex properties such as PFS or PCS in Squirrel, and
simplified with our composition result.

Link proofs in Squirrel with existing framework (BR, CK,eCK,. . .)

Perform an extensive case-study (KEMTLS)
36

The landscape

What we now have (thanks to 40 years of research!)
Many tools, attacker models and associated proof techniques. For instance:

Proverif and Tamarin to verify at a high-level full protocol specifications;

Squirrel to verify precisely the core of a protocol.

But. . .

the tools are developed by distinct groups, and protocol analysis papers are often
at a single level using a single tool;

so many different approaches makes it difficult to export the tools and attacker
models outside the protocol community.

Our goal
Build bridges inside the different groups in the community, as well as outside the
community.

37

The landscape

What we now have (thanks to 40 years of research!)
Many tools, attacker models and associated proof techniques. For instance:

Proverif and Tamarin to verify at a high-level full protocol specifications;

Squirrel to verify precisely the core of a protocol.

But. . .

the tools are developed by distinct groups, and protocol analysis papers are often
at a single level using a single tool;

so many different approaches makes it difficult to export the tools and attacker
models outside the protocol community.

Our goal
Build bridges inside the different groups in the community, as well as outside the
community.

37

The landscape

What we now have (thanks to 40 years of research!)
Many tools, attacker models and associated proof techniques. For instance:

Proverif and Tamarin to verify at a high-level full protocol specifications;

Squirrel to verify precisely the core of a protocol.

But. . .

the tools are developed by distinct groups, and protocol analysis papers are often
at a single level using a single tool;

so many different approaches makes it difficult to export the tools and attacker
models outside the protocol community.

Our goal
Build bridges inside the different groups in the community, as well as outside the
community.

37

Medium-term goal

Issue
The existing protocol analysis paper are often at a single level using a single tool.

Goal
Design a platform that allows to formally combine the guarantees of multiple tool:

First for Tamarin and Proverif, to combine there complementary strengths;

Then integrate Squirrel;

Make a concrete multi-level analysis.

38

Medium-term goal

Issue
The existing protocol analysis paper are often at a single level using a single tool.

Goal
Design a platform that allows to formally combine the guarantees of multiple tool:

First for Tamarin and Proverif, to combine there complementary strengths;

Then integrate Squirrel;

Make a concrete multi-level analysis.

38

Medium-term goal

Issue
The existing protocol analysis paper are often at a single level using a single tool.

Goal
Design a platform that allows to formally combine the guarantees of multiple tool:

First for Tamarin and Proverif, to combine there complementary strengths;

Then integrate Squirrel;

Make a concrete multi-level analysis.

38

Medium-term goal

Issue
The existing protocol analysis paper are often at a single level using a single tool.

Goal
Design a platform that allows to formally combine the guarantees of multiple tool:

First for Tamarin and Proverif, to combine there complementary strengths;

Then integrate Squirrel;

Make a concrete multi-level analysis.

38

Medium-term goal

Issue
The existing protocol analysis paper are often at a single level using a single tool.

Goal
Design a platform that allows to formally combine the guarantees of multiple tool:

First for Tamarin and Proverif, to combine there complementary strengths;

Then integrate Squirrel;

Make a concrete multi-level analysis.

38

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers

Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

Long term goal

Formal Methods

One tool to use them all, and
formally combine guarantees

Cryptographers
Use the tools straight
away in new protocol
designs

Standardizations

Provide all standards
with formal models

Participate in the
development of new
standards

Companies
Governments

Make some techniques
available to non-experts

Beyond
protocols?

attacker models for code
level analysis, e.g. for
fault-injection

39

	Formal Methods for Security and Privacy
	What is the fuss about quantum attackers?
	A post-quantum BC logic
	What's next?

