Squirrel

Computer-Assisted Proofs of Protocols

in the Computational Model

David Baelde

LMF, ENS Paris-Saclay & CNRS, Université Paris-Saclay

April 16, 2021

écolel— .0
(qv Ems— université
paris—saclay PARIS-SACLAY




Security & Privacy

Increasingly many activities are becoming digitalized.

The Daily Npyyg '
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These systems must ensure important properties:
e security: secrecy, authenticity, no double-spending. ..

e privacy: anonymity, absence of tracking. ..
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Security & Privacy

Increasingly many activities are becoming digitalized.

The Daily Npyyg '

2 Y ==

These systems must ensure important properties:
e security: secrecy, authenticity, no double-spending. ..

e privacy: anonymity, absence of tracking. ..

Frequent flaws at the hardware, software and specification levels.
Formal verification can help at all levels.

My focus: specifications of cryptographic protocols.
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Modelling protocols using process algebra

Examples on authentication protocols

Processes:
e R for sessions of reader role;

e T(k) for tag session with
identity parameter k.

System S := IR | ! new k. ! T (k).
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Modelling protocols using process algebra

Examples on authentication protocols

Processes:
e R for sessions of reader role;

e T(k) for tag session with
identity parameter k.

System S := IR | ! new k. ! T (k).

Reachability properties (trace properties)

o Weak secrecy: for any trace of S, attacker does not learn k.

e Authentication: for any trace of S, readers only issue accept events
after the intended interaction with a tag.
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Modelling protocols using process algebra

Examples on authentication protocols

Processes:
e R for sessions of reader role;

e T(k) for tag session with
identity parameter k.

System S := IR | ! new k. ! T (k).

Equivalence properties (hypertrace properties)
e Anonymity: S| T(ki) =~ S| T (k) — they are indistinguishable.
e Strong unlinkability: S ~ !R | ! new k. T(k).
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Computational model

The mathematical setting for provable security in cryptography
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In general, properties only hold with overwhelming probability,
under some assumptions on cryptographic primitives.
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Computational model

The mathematical setting for provable security in cryptography

Messages = bitstrings

Secrets = random samplings

Computations = PPTIME Turing machines

In general, properties only hold with overwhelming probability,
under some assumptions on cryptographic primitives.
Example (Unforgeability, EUF-CMA)
There is a negligible probability of success for the following game,
for any attacker A:

e Draw k uniformly at random.

o (u,v) := A9 where O is the oracle x + h(x, k).

e Succeed if u = h(v, k) and O has not been called on v.
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Symbolic model

An idealized setting, also known as Dolev-Yao model

P, .
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Secrets = fresh constants (no probabilities)

3 Computations = equational theory
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An idealized setting, also known as Dolev-Yao model

P, .
2 e, oo P4 Messages = terms
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Secrets = fresh constants (no probabilities)

3 Computations = equational theory

Example (Equational theories)
e Symmetric encryption: sdec(senc(x,y),y) = x.
e Exclusive or: assoc., commut., x® 0 =g x and x ® x =g 0.

e Hash function: no equation.
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Symbolic model

An idealized setting, also known as Dolev-Yao model

P, .
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Secrets = fresh constants (no probabilities)

3 Computations = equational theory

Example (Equational theories)
e Symmetric encryption: sdec(senc(x,y),y) = x.
e Exclusive or: assoc., commut., x® 0 =g x and x ® x =g 0.

e Hash function: no equation.
Thus h(u, k) =g h(v, k) implies u =g v,
and h(u, k) indistinguishable from fresh name if k is private.
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Verification in the symbolic model

Trace properties

Undecidable in general, some restrictions decidable.
Mature automated tools borrowing, e.g., from rewriting and logic.

e Casper, Proverif, AVISPA, Scyther, Tamarin
(Oxford, Inria Paris & Nancy, ETH Ziirich, CISPA)

e Breaking/fixing/proving Google SSO, 3G/5G authentication,
Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.
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Trace properties

Undecidable in general, some restrictions decidable.
Mature automated tools borrowing, e.g., from rewriting and logic.

e Casper, Proverif, AVISPA, Scyther, Tamarin
(Oxford, Inria Paris & Nancy, ETH Ziirich, CISPA)

e Breaking/fixing/proving Google SSO, 3G/5G authentication,
Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.

Equivalence properties

e Bounded sessions: several tools and some decision procedures
SPEC, Apte, Akiss, DeepSec, SAT-Equiv (ANU, LSV, Inria Nancy)

e Unbounded sessions: diff-equivalence in Proverif and Tamarin
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Unlinkability in the symbolic model

[B., Delaune & Hirschi, SP'16 and JCS’19] and [B., Delaune & Moreau, CSF'20]

Strong unlinkability for authentication protocols (e.g. RFID, e-passport)
expressed as equivalence between multiple- and single-session systems.

e First time formal proofs (and some attack discoveries)
for BAC, PACE, DAA, ABCDH, Feldhofer, OSK, LAK...
using Proverif and Tamarin.
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Unlinkability in the symbolic model

[B., Delaune & Hirschi, SP'16 and JCS’19] and [B., Delaune & Moreau, CSF'20]

Strong unlinkability for authentication protocols (e.g. RFID, e-passport)
expressed as equivalence between multiple- and single-session systems.

e First time formal proofs (and some attack discoveries)
for BAC, PACE, DAA, ABCDH, Feldhofer, OSK, LAK...
using Proverif and Tamarin.

e Human guidance is required to reason about protocols with state.

e Limited support for Xor in Proverif and Tamarin:
cannot handle simple RFID protocol with Xor (MW).

e Limited Diffie-Hellman support in Proverif: misses attack on PACE.
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Computational soundness
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Some computational soundness theorems show that, in some cases,
symbolic attackers account for all computational attacks.
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They remain limited by strong assumptions.
e No sound symbolic abstraction of Xor.

e |t seems hard to account for the nuanced properties of hash functions
using symbolic models.
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Some computational soundness theorems show that, in some cases,
symbolic attackers account for all computational attacks.
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They remain limited by strong assumptions.
e No sound symbolic abstraction of Xor.
e |t seems hard to account for the nuanced properties of hash functions
using symbolic models.
Alternative: direct verification in the computational model.
e Cryptoverif, Easycrypt ...and Squirrel.

8/24



The CCSA approach:

Computationally Complete Symbolic Attacker

[Bana & Comon, CCS'14]



First-order logic over computational models

Terms interpreted as PPTIME machines

e Names = constants n, k interpreted as uniform samplings

e Primitives = function symbols interpreted as deterministic machines
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First-order logic over computational models

Terms interpreted as PPTIME machines

e Names = constants n, k interpreted as uniform samplings
e Primitives = function symbols interpreted as deterministic machines

e Attacker computations =
adversarial function symbols att; interpreted as PPTIME machines

e Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate o ~ V interpreted as computational indistinguishability.

Example
e We have EQ(n, m) ~ false and even EQ(n, att;(m)) ~ false.
e We also have (7'~ V) = (&,n ~ vV, m)
when the names n, m do not occur in the ground terms i, V.
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Example: the MW protocol

[Molnar & Wagner, CCS’'04]

Assume a PRF h(_,_).

Each tag T; is associated to an identity id; and key key;.
Reader R has access to database of all credentials.

R—T;, : ng

Ti— R : (n7,id; ® h({0,ng,nT), key;))
R — 7—/ . idi@h(<17nR>nT>>keyi)

11/24



Example: the MW protocol

[Molnar & Wagner, CCS'04]

Assume a PRF h(_,_).

Each tag T; is associated to an identity id; and key key;.
Reader R has access to database of all credentials.

R—T;, : ng
Ti— R : (n7,id; ® h({0,ng,nT), key;))
R— T/ : Idl @ h(<17 nRr, nT)a keyi)

Example (Interaction with a reader)

def
tinput é attl(nR)
i def .
bl ccept = EQ (snd(tinput) @ id;, h({0, ng, fst(tinput)), key,-))

Authentication: false ~ bl ..ot 7
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Example: the MW protocol

[Molnar & Wagner, CCS'04]

Assume a PRF h(_,_).

Each tag T; is associated to an identity id; and key key;.
Reader R has access to database of all credentials.

R—T;, : ng

Ti— R : (n7,id; ® h({0,ng,nT), key;))
R — Tl IdI @ h(<17 R, nT)a keyi)

Example (Interaction with T; and T;)

oi ¥ (nr,id; ®h({0,att(...),n7), key;))
of € (n'r,id; @ h({0,atty(...), n'r), key;))

Anonymity: o;, 0} ~ 0;,0; ?
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Axiomatizing primitives

Example (EUF-CMA axiom)
Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~ ( EQ(s, h(t,k)) = (Vues EQ(u, t)) )

where S = { u | h(u, k) occurs in s, t} and k is only used in key position.
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where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)

V,h(t, k) ~ V,if Vyes EQ(u,t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in V, t.
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Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~ ( EQ(s, h(t,k)) = (Vues EQ(u, t)) )

where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)
V,h(t, k) ~ V,if Vyes EQ(u,t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in V, t.

Example (Information-hiding property of Xor)

gyt®dn~d,m when n, m fresh and len(t) = len(n)
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Axiomatizing primitives

Example (EUF-CMA axiom)
Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~ ( EQ(s, h(t,k)) = (Vues EQ(u, t)) )

where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)
V,h(t, k) ~ V,if Vyes EQ(u,t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in V, t.

Example (Information-hiding property of Xor)

U, t ®n ~ i,if len(t) = len(n) then melse (t@®n)  when  n,m fresh
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Verifying protocols using the CCSA logic

Assume some primitives and crypto assumptions.
Let Ax be the corresponding axiom schemes.

Computational indistinguishability

Consider protocols P and Q with bounded traces.

o Generate for each trace t; the verification goal p; := (&}, ~ Vi)
where 07, are the messages that P outputs for that trace,
and similarly for v;, and Q.

e Verify that Ax |= ¢; using any proof system for first-order logic.

Reachability properties

Consider a protocol with bounded traces and some reachability property.
e Generate for each trace t; a goal p¢, := (b, ~ true).
o Verify that Ax = ¢,
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Limitations of the CCSA logic

The CCSA approach has some practical limitations:
e So far, automatically verifying Ax |= ¢ remains infeasible.

e The methodology assumes a fixed bound b on protocol traces.

,lz)/ w//
base logic Oty Ptyy - - + (G = Ty, Tey -
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Limitations of the CCSA logic

The CCSA approach has some practical limitations:

e So far, automatically verifying Ax |= ¢ remains infeasible.

e The methodology assumes a fixed bound b on protocol traces.

~ Develop a meta-logic

meta-logic

base logic

,l!)/ ¢//
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Limitations of the CCSA logic

The CCSA approach has some practical limitations:
e So far, automatically verifying Ax |= ¢ remains infeasible.

e The methodology assumes a fixed bound b on protocol traces.

~» Develop a meta-logic suitable for interactive proofs, independent of b.

w/ \U//
meta-logic ) + v = M
U |3 |3
,lz)/ w//
base logic Otys Pty - + Y = T, Tty «--
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The Squirrel Prover:

A Meta-Logic for Proving Protocols in the
Computational Model

[B., Delaune, Jacomme, Koutsos & Moreau, SP'21]



Representing protocols and their executions

In our framework a protocol is given by:
e a partially ordered set of actions;
for each action, a condition and an output term;
e some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.
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Representing protocols and their executions

In our framework a protocol is given by:
e a partially ordered set of actions;
e for each action, a condition and an output term;
e some more things if mutable variables are considered.
We use indices to represent unbounded sets of actions and messages.
Example (MW)
Actions:
e T(i,j) and T'(i, ) for session j of T;, with T(i,j) < T'(i,J)
e R(k) and R'(k) for session k of R, with R(k) < R'(k)
Semantics:
o output@T(i,j) = (n7(i.j),h((0, input@T(i,j), n7(i,)), key()))
o cond@R/(k) & 3i. snd(tinput) @ id; = h({0, nr(k), fst(tinput)); key;)

o frame@A % (exec@A, if exec@A then output@A, frame@pred(A))
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Meta-logic terms and formulas

Syntax

Meta-formulas @ feature indices, timestamps, macros,
quantifications over timestamp and index variables.

Example (Authentication for arbitrary traces of MW protocol)

Vk. cond@R'(k) = 3i,j. T(i,j) < R'(k) Ainput@T(i,;) = output@R(k)

v
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Meta-logic terms and formulas

Syntax

Meta-formulas @ feature indices, timestamps, macros,
quantifications over timestamp and index variables.

Example (Authentication for arbitrary traces of MW protocol)
Vk. cond@R'(k) = 3i,j. T(i,j) < R'(k) Ainput@T(i,;) = output@R(k)

v

Given protocol P and trace model T, interpret ® as base logic term ()

e Indices and timestamps interpreted in finite domains.

T
P

e Interpretation of < wrt. a fixed trace of executed actions.
Meta-formula @ is valid wrt. P when M |= ()7, ~ true for all T and M.
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Meta-logic sequents and proof systems

Reachability properties

Sequents [ =p ® where I is a multiset of meta-formulas, P a protocol.
Valid when, for all T, the base logic formula (Al = <;5)771; ~ true is valid.

e Inference rules of standard classical first-order logic.

e Reasoning about ordering on timestamps, e.g. induction.

e Liftings of CCSA axioms, in particular crypto. assumptions.
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Meta-logic sequents and proof systems

Reachability properties

Sequents [ =p ® where I is a multiset of meta-formulas, P a protocol.
Valid when, for all T, the base logic formula (Al = <;5)771; ~ true is valid.

e Inference rules of standard classical first-order logic.

e Reasoning about ordering on timestamps, e.g. induction.

e Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents ... Fppr i~ V for protocols P and P’.
Valid when, for all T, the base logic formula (&)} ~ (V)3 is valid.

Protocols P and P’ are indistinguishable when Fp p/ frame@t ~ frame@t.

The two proof systems interact:
use reachability property to prove an equivalence, and conversely.
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An authentication goal for MW

Let ¢ := 3i,j. T(i,j) <R'(k) A input@T(i,j) = output@R( )
A input@R’(k) = fst(output@T (i, )).

Prove cond@R’(k) I ¢ by EUF, which yields two cases:

o T(i,j) < R'(k),(0,ngr(k),fst(input@R’(k))) = (0,input®@T(i,}), n7(i,j)) &
using obvious choices for existentials.

o R'(K') <R'(k),{0,_,_) = (1,_,_) F ¢ absurd since 0 = 1.
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An authentication goal for MW

Let ¢ := 3i,j. T(i,j) <R'(k) A input@T(i,j) = output@R( )
A input@R’(k) = fst(output@T (i, )).

Prove cond@R’(k) I ¢ by EUF, which yields two cases:

o T(i,j) < R'(k),(0,ngr(k),fst(input@R’(k))) = (0,input®@T(i,}), n7(i,j)) &
using obvious choices for existentials.

o R'(K') <R'(k),{0,_,_) = (1,_,_) F ¢ absurd since 0 = 1.

Reasoning only relies on unforgeability of h, nothing to do with Xor!
It also seems close to what a cryptographer would say.
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Unlinkability for MW

Let E(T) :=frame@T ~ frame@T.
Prove ks frame@7 ~ frame@t by induction:

Obvious if 7 = init.

When 7 = R(k):
E(pred(R(k))) F frame@pred(R(k ))7 r(k) ~ frame@pred( (k)), nr(k)
by freshness and R(k) < R(k) V R'(k) < R(k)

When 7 = T(i,):
E(pred(T(i,j))) F frame®@pred(T(i,)),n7(i,5),id(i) ® h(..., key(i)) ~
frame@pred(T(/,/)), nr(i,j),id"(i,j) @ h(... key'(i,J))
by PRF, Xor and freshness.
When 7 = R'(k):
E(pred(R'(k))) F frame@pred(R'(k)), if exec@R'(k) then output@R’(k) ~
frame@pred(R’(k)), if exec@R'(k) then output@R’(k)
using authentication lemmas to replace exec@R’(k) on both sides with
formula that contains only public information,
followed by PRF, Xor and freshness.
(I'm omitting some complexities wrt. the output.)
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The Squirrel prover

File Edit Options Buffers Tools squimel Proof-General Help -
P=Goal K Retract «{Undo B> Next ¥ Use b-4{Goto 0= {fkHome |&-Command @ interupt @ Restart 0 Help

[goal> Focused goal (1/1):
hash h
abstract ok : message ,
abstract ko : message (cond@R' (k) =>

exists (i,j:index), (T(i,j) < R'(k) & input@T(i,j) = output@R(k)))
name key : index->message

name n : index->message

channel cT
channel cR

process tag(i:index,j:index) =
in(cR,x); out(cT,h(x,key(i)))

process reader (k:index) =
out(cR,n(k));
in(cT,x); o a
ETeIRTTI A\ proof assistant for our meta-logic
R': out(cR,ok)
else

R out(eR ko) e About 15k lines of OCaml code,
system ((!_k R: reader(k)) | (! i ! j T: tag(i,j))).

s achanticotionik Proof General integration.

forall k:index, condeR'(k) =>

oo o1 (e T R0 Gmaet: g Protocol specification in 7-calculus style.
1 éiﬁéﬁi'mmmk.. . .
s w. e Trace and equivalence properties.
Qed.
: hash. Bot L36 (squirrel script 42 Scripting )

e Basic automated reasoning,
tactics and proof-search combinators.
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Summary of contributions

First-time mechanized proofs using CCSA approach:
e NSL, PA, Feldhofer, LAK, MW, SSH
e Hashes, signatures, encryptions, Xor & Diffie-Hellman

e Authentication, strong secrecy, unlinkability
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Summary of contributions

First-time mechanized proofs using CCSA approach:
e NSL, PA, Feldhofer, LAK, MW, SSH

e Hashes, signatures, encryptions, Xor & Diffie-Hellman

e Authentication, strong secrecy, unlinkability

Comparison with other approaches

Computational verification: in between Cryptoverif (game-hopping) and
Easycrypt (pRHL) in terms of automation; also expressivity trade-offs.

Symbolic verification:
e Similarities with Tamarin: logic over traces, backward reasoning.
e Computational guarantees! also, no implicit assumptions.

e No automated attack finding.

Less automated, but sometimes just as easy, even better for MW.
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Future work on/with Squirrel

e Truly unbounded guarantees:
validity of meta-logic formulas only means security for each trace.

e Branching-time logic, e.g. for weak secrets or audits.

e Maintaining a coherent, usable implementation.

e Engineering trust: code generation, partial Coq certification.

Complex applications

e Protocols with state, oracles, compromises. ..

e Extensive models of deployed protocols e.g. Signal, TLS, Webauthn.
e Scalability issues: more automation (SMT), composition results.

e Bridging implementation and specification-level security:
interoperable tools through standard computational semantics.
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