Squirrel

Computer-Assisted Proofs of Protocols in the Computational Model

David Baelde

LMF, ENS Paris-Saclay & CNRS, Université Paris-Saclay

April 16, 2021

	école	.•
G1	normale ———— supérieure ———	universite
	paris–saclay——	PARIS-SACLAY

Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

- security: secrecy, authenticity, no double-spending...
- privacy: anonymity, absence of tracking...

Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

- security: secrecy, authenticity, no double-spending...
- privacy: anonymity, absence of tracking...

Frequent flaws at the hardware, software and specification levels. Formal verification can help at all levels.

My focus: specifications of cryptographic protocols.

Modelling protocols using process algebra Examples on authentication protocols

Processes:

- R for sessions of reader role;
- *T*(*k*) for tag session with identity parameter *k*.

System S := !R | ! new k. !T(k).

Modelling protocols using process algebra Examples on authentication protocols

Processes:

- *R* for sessions of reader role;
- *T*(*k*) for tag session with identity parameter *k*.

System S := !R | ! new k. !T(k).

Reachability properties (trace properties)

- Weak secrecy: for any trace of S, attacker does not learn k.
- Authentication: for any trace of *S*, readers only issue *accept* events after the intended interaction with a tag.

Modelling protocols using process algebra Examples on authentication protocols

Processes:

- *R* for sessions of reader role;
- *T*(*k*) for tag session with identity parameter *k*.

System S := !R | ! new k. !T(k).

Equivalence properties (hypertrace properties)

- Anonymity: $S \mid T(k_1) \approx S \mid T(k_2)$ they are indistinguishable.
- Strong unlinkability: $S \approx !R \mid ! \text{ new } k. T(k)$.

Computational model

The mathematical setting for provable security in cryptography

 ${\sf Messages} = {\sf bitstrings}$

Secrets = random samplings

Computations = PPTIME Turing machines

Computational model

The mathematical setting for provable security in cryptography

 $\mathsf{Messages} = \mathsf{bitstrings}$

 $Secrets = random \ samplings$

 $Computations = \mathsf{PPTIME} \ \mathsf{Turing} \ \mathsf{machines}$

In general, properties only hold with overwhelming probability, under some assumptions on cryptographic primitives.

Computational model

The mathematical setting for provable security in cryptography

 ${\sf Messages} = {\sf bitstrings}$

 $Secrets = random \ samplings$

 $Computations = \mathsf{PPTIME} \ \mathsf{Turing} \ \mathsf{machines}$

In general, properties only hold with overwhelming probability, under some assumptions on cryptographic primitives.

Example (Unforgeability, EUF-CMA)

There is a negligible probability of success for the following game, for any attacker \mathcal{A} :

- Draw k uniformly at random.
- $\langle u, v \rangle := \mathcal{A}^{\mathcal{O}}$ where \mathcal{O} is the oracle $x \mapsto h(x, k)$.
- Succeed if u = h(v, k) and O has not been called on v.

Symbolic model An idealized setting, also known as Dolev-Yao model

Messages = terms

Secrets = fresh constants (no probabilities)

Computations = equational theory

Symbolic model An idealized setting, also known as Dolev-Yao model

Messages = terms

Secrets = fresh constants (no probabilities)

Computations = equational theory

Example (Equational theories)

- Symmetric encryption: $sdec(senc(x, y), y) =_E x$.
- Exclusive or: assoc., commut., $x \oplus 0 =_{\mathsf{E}} x$ and $x \oplus x =_{\mathsf{E}} 0$.
- Hash function: no equation.

Symbolic model An idealized setting, also known as Dolev-Yao model

 $\mathsf{Messages} = \mathsf{terms}$

Secrets = fresh constants (no probabilities)

Computations = equational theory

Example (Equational theories)

- Symmetric encryption: $sdec(senc(x, y), y) =_E x$.
- Exclusive or: assoc., commut., $x \oplus 0 =_{\mathsf{E}} x$ and $x \oplus x =_{\mathsf{E}} 0$.
- Hash function: no equation. Thus h(u, k) =_E h(v, k) implies u =_E v, and h(u, k) indistinguishable from fresh name if k is private.

Trace properties

Undecidable in general, some restrictions decidable. Mature automated tools borrowing, e.g., from rewriting and logic.

- Casper, Proverif, AVISPA, Scyther, Tamarin (Oxford, Inria Paris & Nancy, ETH Zürich, CISPA)
- Breaking/fixing/proving Google SSO, 3G/5G authentication, Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.

Trace properties

Undecidable in general, some restrictions decidable. Mature automated tools borrowing, e.g., from rewriting and logic.

- Casper, Proverif, AVISPA, Scyther, Tamarin (Oxford, Inria Paris & Nancy, ETH Zürich, CISPA)
- Breaking/fixing/proving Google SSO, 3G/5G authentication, Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.

Equivalence properties

- Bounded sessions: several tools and some decision procedures SPEC, Apte, Akiss, DeepSec, SAT-Equiv (ANU, LSV, Inria Nancy)
- Unbounded sessions: diff-equivalence in Proverif and Tamarin

Strong unlinkability for authentication protocols (e.g. RFID, e-passport) expressed as equivalence between multiple- and single-session systems.

• First time formal proofs (and some attack discoveries) for BAC, PACE, DAA, ABCDH, Feldhofer, OSK, LAK... using Proverif and Tamarin.

Strong unlinkability for authentication protocols (e.g. RFID, e-passport) expressed as equivalence between multiple- and single-session systems.

• First time formal proofs (and some attack discoveries) for BAC, PACE, DAA, ABCDH, Feldhofer, OSK, LAK... using Proverif and Tamarin.

Lessons

- Human guidance is required to reason about protocols with state.
- Limited support for Xor in Proverif and Tamarin: cannot handle simple RFID protocol with Xor (MW).
- Limited Diffie-Hellman support in Proverif: misses attack on PACE.

Computational soundness

Some computational soundness theorems show that, in some cases, symbolic attackers account for all computational attacks.

They remain limited by strong assumptions.

- No sound symbolic abstraction of Xor.
- It seems hard to account for the nuanced properties of hash functions using symbolic models.

Computational soundness

Some computational soundness theorems show that, in some cases, symbolic attackers account for all computational attacks.

They remain limited by strong assumptions.

- No sound symbolic abstraction of Xor.
- It seems hard to account for the nuanced properties of hash functions using symbolic models.

Alternative: direct verification in the computational model.

• Cryptoverif, Easycrypt ... and Squirrel.

The CCSA approach: Computationally Complete Symbolic Attacker [Bana & Comon, CCS'14]

Terms interpreted as PPTIME machines

- Names = constants n, k interpreted as uniform samplings
- Primitives = function symbols interpreted as deterministic machines

Terms interpreted as PPTIME machines

- Names = constants n, k interpreted as uniform samplings
- Primitives = function symbols interpreted as deterministic machines
- Attacker computations = adversarial function symbols att_i interpreted as PPTIME machines
- Some symbols with fixed interpretation: true, false, EQ, etc.

Terms interpreted as PPTIME machines

- Names = constants n, k interpreted as uniform samplings
- Primitives = function symbols interpreted as deterministic machines
- Attacker computations = adversarial function symbols att_i interpreted as PPTIME machines
- Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate $\vec{u} \sim \vec{v}$ interpreted as computational indistinguishability.

Example

• We have $EQ(n,m) \sim false$

Terms interpreted as PPTIME machines

- Names = constants n, k interpreted as uniform samplings
- Primitives = function symbols interpreted as deterministic machines
- Attacker computations = adversarial function symbols att_i interpreted as PPTIME machines
- Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate $\vec{u} \sim \vec{v}$ interpreted as computational indistinguishability.

Example

• We have $\mathsf{EQ}(n,m)\sim\mathsf{false}$ and even $\mathsf{EQ}(n,\mathsf{att}_1(m))\sim\mathsf{false}.$

Terms interpreted as PPTIME machines

- Names = constants n, k interpreted as uniform samplings
- Primitives = function symbols interpreted as deterministic machines
- Attacker computations = adversarial function symbols att_i interpreted as PPTIME machines
- Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate $\vec{u} \sim \vec{v}$ interpreted as computational indistinguishability.

Example

- We have $\mathsf{EQ}(n,m)\sim\mathsf{false}$ and even $\mathsf{EQ}(n,\mathsf{att}_1(m))\sim\mathsf{false}.$
- We also have $(\vec{u} \sim \vec{v}) \Rightarrow (\vec{u}, n \sim \vec{v}, m)$ when the names n, m do not occur in the ground terms \vec{u}, \vec{v} .

Example: the MW protocol [Molnar & Wagner, CCS'04]

Assume a PRF $h(_{-},_{-})$. Each tag T_i is associated to an identity id_i and key key_i. Reader R has access to database of all credentials.

$$\begin{array}{rcl} R \to T_i &:& \mathsf{n}_R \\ T_i \to R &:& \langle \mathsf{n}_T, \mathsf{id}_i \oplus \mathsf{h}(\langle 0, \mathsf{n}_R, \mathsf{n}_T \rangle, \mathsf{key}_i) \rangle \\ R \to T_i &:& \mathsf{id}_i \oplus \mathsf{h}(\langle 1, \mathsf{n}_R, \mathsf{n}_T \rangle, \mathsf{key}_i) \end{array}$$

Example: the MW protocol [Molnar & Wagner, CCS'04]

Assume a PRF $h(_{-},_{-})$. Each tag T_i is associated to an identity id_i and key key_i. Reader R has access to database of all credentials.

$$\begin{array}{rcl} R \to T_i &:& \mathsf{n}_R \\ T_i \to R &:& \langle \mathsf{n}_T, \mathsf{id}_i \oplus \mathsf{h}(\langle 0, \mathsf{n}_R, \mathsf{n}_T \rangle, \mathsf{key}_i) \rangle \\ R \to T_i &:& \mathsf{id}_i \oplus \mathsf{h}(\langle 1, \mathsf{n}_R, \mathsf{n}_T \rangle, \mathsf{key}_i) \end{array}$$

Example (Interaction with a reader)

$$\begin{array}{ll}t_{\text{input}} & \stackrel{\text{def}}{=} & \operatorname{att}_{1}(n_{R})\\ b_{\text{accept}}^{i} & \stackrel{\text{def}}{=} & \operatorname{EQ}(\operatorname{snd}(t_{\text{input}}) \oplus \operatorname{id}_{i}, \operatorname{h}(\langle 0, n_{R}, \operatorname{fst}(t_{\text{input}}) \rangle, \operatorname{key}_{i}))\end{array}$$

Authentication: false $\sim b_{\text{accept}}^i$?

Example: the MW protocol [Molnar & Wagner, CCS'04]

Assume a PRF $h(_{-, -})$. Each tag T_i is associated to an identity id_i and key key_i. Reader R has access to database of all credentials.

$$\begin{array}{rcl} R \to T_i &:& \mathsf{n}_R \\ T_i \to R &:& \langle \mathsf{n}_T, \mathsf{id}_i \oplus \mathsf{h}(\langle 0, \mathsf{n}_R, \mathsf{n}_T \rangle, \mathsf{key}_i) \rangle \\ R \to T_i &:& \mathsf{id}_i \oplus \mathsf{h}(\langle 1, \mathsf{n}_R, \mathsf{n}_T \rangle, \mathsf{key}_i) \end{array}$$

Example (Interaction with T_i and T_j)

$$\begin{array}{ll} o_i & \stackrel{def}{=} & \langle \mathsf{n}_T, \mathsf{id}_i \oplus \mathsf{h}(\langle 0, \mathsf{att}_1(\ldots), \mathsf{n}_T \rangle, \mathsf{key}_i) \rangle \\ o'_j & \stackrel{def}{=} & \langle \mathsf{n}'_T, \mathsf{id}_j \oplus \mathsf{h}(\langle 0, \mathsf{att}_1(\ldots), \mathsf{n}'_T \rangle, \mathsf{key}_j) \rangle \end{array}$$

Anonymity: $o_i, o'_i \sim o_i, o'_i$?

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~ (EQ(s, h(t, k))
$$\Rightarrow$$
 ($\dot{\lor}_{u \in S}$ EQ(u, t)))

where $S = \{ u \mid h(u, k) \text{ occurs in } s, t \}$ and k is only used in key position.

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~
$$(\mathsf{EQ}(s, \mathsf{h}(t, \mathsf{k})) \Rightarrow (\lor_{u \in S} \mathsf{EQ}(u, t)))$$

where $S = \{ u \mid h(u, k) \text{ occurs in } s, t \}$ and k is only used in key position.

Example (PRF axiom)

 \vec{v} , h(t, k) ~ \vec{v} , if $\forall_{u \in S} EQ(u, t)$ then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in \vec{v}, t .

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~
$$(\mathsf{EQ}(s, \mathsf{h}(t, \mathsf{k})) \Rightarrow (\lor_{u \in S} \mathsf{EQ}(u, t)))$$

where $S = \{ u \mid h(u, k) \text{ occurs in } s, t \}$ and k is only used in key position.

Example (PRF axiom)

 \vec{v} , h(t, k) ~ \vec{v} , if $\forall_{u \in S} EQ(u, t)$ then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in \vec{v}, t .

Example (Information	-hiding propert	y of Xor)
$ec{u}, t \oplus n \sim ec{u}, m$	when	n, m fresh and $len(t) = len(n)$

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ~
$$(\mathsf{EQ}(s, \mathsf{h}(t, \mathsf{k})) \Rightarrow (\lor_{u \in S} \mathsf{EQ}(u, t)))$$

where $S = \{ u | h(u, k) \text{ occurs in } s, t \}$ and k is only used in key position.

Example (PRF axiom)

 \vec{v} , h(t, k) ~ \vec{v} , if $\forall_{u \in S} EQ(u, t)$ then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in \vec{v}, t .

Example (Information-hiding property of Xor) $\vec{u}, t \oplus n \sim \vec{u}, \text{ if } \text{len}(t) = \text{len}(n) \text{ then m else } (t \oplus n) \text{ when } n, m \text{ fresh}$

Verifying protocols using the CCSA logic

Assume some primitives and crypto assumptions. Let Ax be the corresponding axiom schemes.

Computational indistinguishability

Consider protocols ${\mathcal P}$ and ${\mathcal Q}$ with bounded traces.

- Generate for each trace t_i the verification goal φ_i := (u_{ti} ~ v_{ti}) where u_{ti} are the messages that P outputs for that trace, and similarly for v_{ti} and Q.
- Verify that $Ax \models \varphi_i$ using any proof system for first-order logic.

Reachability properties

Consider a protocol with bounded traces and some reachability property.

- Generate for each trace t_i a goal $\varphi_{t_i} := (b_{t_i} \sim \text{true})$.
- Verify that $Ax \models \varphi_{t_i}$.

Limitations of the CCSA logic

ł

The CCSA approach has some practical limitations:

- So far, automatically verifying $Ax \models \varphi_t$ remains infeasible.
- The methodology assumes a fixed bound b on protocol traces.

pase logic
$$\varphi_{t_1}, \varphi_{t_2}, \ldots + \frac{\psi' \quad \psi''}{\psi} = \pi_{t_1}, \pi_{t_2}, \ldots$$

Limitations of the CCSA logic

The CCSA approach has some practical limitations:

- So far, automatically verifying $Ax \models \varphi_t$ remains infeasible.
- The methodology assumes a fixed bound b on protocol traces.

 \rightsquigarrow Develop a meta-logic

Limitations of the CCSA logic

The CCSA approach has some practical limitations:

- So far, automatically verifying $Ax \models \varphi_t$ remains infeasible.
- The methodology assumes a fixed bound b on protocol traces.

 \rightsquigarrow Develop a meta-logic suitable for interactive proofs, independent of *b*.

The Squirrel Prover: A Meta-Logic for Proving Protocols in the Computational Model

[B., Delaune, Jacomme, Koutsos & Moreau, SP'21]

In our framework a protocol is given by:

- a partially ordered set of actions;
- for each action, a condition and an output term;
- some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

In our framework a protocol is given by:

- a partially ordered set of actions;
- for each action, a condition and an output term;
- some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

- T(i,j) and T'(i,j) for session j of T_i
- R(k) and R'(k) for session k of R

In our framework a protocol is given by:

- a partially ordered set of actions;
- for each action, a condition and an output term;
- some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

- T(i,j) and T'(i,j) for session j of T_i , with T(i,j) < T'(i,j)
- R(k) and R'(k) for session k of R, with R(k) < R'(k)

In our framework a protocol is given by:

- a partially ordered set of actions;
- for each action, a condition and an output term;
- some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

- T(i,j) and T'(i,j) for session j of T_i , with T(i,j) < T'(i,j)
- R(k) and R'(k) for session k of R, with R(k) < R'(k)

Semantics:

- output@T(*i*,*j*) $\stackrel{\text{def}}{=} \langle n_T(i,j), h(\langle 0, \text{input}@T(i,j), n_T(i,j) \rangle, \text{key}(i)) \rangle$
- cond@R'(k) $\stackrel{def}{=} \exists i. \text{ snd}(t_{input}) \oplus id_i = h(\langle 0, n_R(k), fst(t_{input}) \rangle, key_i)$
- frame@A ^{def} = ⟨exec@A, if exec@A then output@A, frame@pred(A)⟩

Syntax

Meta-formulas Φ feature indices, timestamps, macros, quantifications over timestamp and index variables.

Example (Authentication for arbitrary traces of MW protocol)

 $\forall k. \ \operatorname{cond} \mathbb{QR}'(k) \Rightarrow \ \exists i, j. \ \mathsf{T}(i, j) < \mathsf{R}'(k) \land \operatorname{input} \mathbb{QT}(i, j) = \operatorname{output} \mathbb{QR}(k)$

Syntax

Meta-formulas Φ feature indices, timestamps, macros, quantifications over timestamp and index variables.

Example (Authentication for arbitrary traces of MW protocol)

 $\forall k. \ \operatorname{cond} \mathbb{Q} \mathbb{R}'(k) \Rightarrow \exists i, j. \ \mathsf{T}(i, j) < \mathbb{R}'(k) \land \operatorname{input} \mathbb{Q} \mathsf{T}(i, j) = \operatorname{output} \mathbb{Q} \mathbb{R}(k)$

Semantics

Given protocol \mathcal{P} and *trace model* \mathbb{T} , interpret Φ as base logic *term* $(\Phi)_{\mathcal{P}}^{\mathbb{T}}$.

- Indices and timestamps interpreted in finite domains.
- Interpretation of < wrt. a fixed trace of executed actions.

Meta-formula Φ is valid wrt. \mathcal{P} when $\mathcal{M} \models (\Phi)_{\mathcal{P}}^{\mathbb{T}} \sim \text{true}$ for all \mathbb{T} and \mathcal{M} .

Sequents $\Gamma \vdash_{\mathcal{P}} \Phi$ where Γ is a multiset of meta-formulas, \mathcal{P} a protocol. Valid when, for all \mathbb{T} , the base logic formula $(\wedge \Gamma \Rightarrow \phi)_{\mathcal{P}}^{\mathbb{T}} \sim \text{true}$ is valid.

- Inference rules of standard classical first-order logic.
- Reasoning about ordering on timestamps, e.g. induction.
- Liftings of CCSA axioms, in particular crypto. assumptions.

Sequents $\Gamma \vdash_{\mathcal{P}} \Phi$ where Γ is a multiset of meta-formulas, \mathcal{P} a protocol. Valid when, for all \mathbb{T} , the base logic formula $(\wedge \Gamma \Rightarrow \phi)_{\mathcal{P}}^{\mathbb{T}} \sim \text{true}$ is valid.

- Inference rules of standard classical first-order logic.
- Reasoning about ordering on timestamps, e.g. induction.
- Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents $\dots \vdash_{\mathcal{P},\mathcal{P}'} \vec{u} \sim \vec{v}$ for protocols \mathcal{P} and \mathcal{P}' . Valid when, for all \mathbb{T} , the base logic formula $(\vec{u})_{\mathcal{P}}^{\mathbb{T}} \sim (\vec{v})_{\mathcal{P}'}^{\mathbb{T}}$ is valid.

Sequents $\Gamma \vdash_{\mathcal{P}} \Phi$ where Γ is a multiset of meta-formulas, \mathcal{P} a protocol. Valid when, for all \mathbb{T} , the base logic formula $(\wedge \Gamma \Rightarrow \phi)_{\mathcal{P}}^{\mathbb{T}} \sim \text{true}$ is valid.

- Inference rules of standard classical first-order logic.
- Reasoning about ordering on timestamps, e.g. induction.
- Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents $\ldots \vdash_{\mathcal{P},\mathcal{P}'} \vec{u} \sim \vec{v}$ for protocols \mathcal{P} and \mathcal{P}' . Valid when, for all \mathbb{T} , the base logic formula $(\vec{u})_{\mathcal{P}}^{\mathbb{T}} \sim (\vec{v})_{\mathcal{P}'}^{\mathbb{T}}$ is valid. Protocols \mathcal{P} and \mathcal{P}' are indistinguishable when $\vdash_{\mathcal{P},\mathcal{P}'}$ frame@ $t \sim$ frame@t.

Sequents $\Gamma \vdash_{\mathcal{P}} \Phi$ where Γ is a multiset of meta-formulas, \mathcal{P} a protocol. Valid when, for all \mathbb{T} , the base logic formula $(\wedge \Gamma \Rightarrow \phi)_{\mathcal{P}}^{\mathbb{T}} \sim \text{true}$ is valid.

- Inference rules of standard classical first-order logic.
- Reasoning about ordering on timestamps, e.g. induction.
- Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents $\ldots \vdash_{\mathcal{P},\mathcal{P}'} \vec{u} \sim \vec{v}$ for protocols \mathcal{P} and \mathcal{P}' . Valid when, for all \mathbb{T} , the base logic formula $(\vec{u})_{\mathcal{P}}^{\mathbb{T}} \sim (\vec{v})_{\mathcal{P}'}^{\mathbb{T}}$ is valid. Protocols \mathcal{P} and \mathcal{P}' are indistinguishable when $\vdash_{\mathcal{P},\mathcal{P}'}$ frame@ $t \sim$ frame@t.

The two proof systems interact:

use reachability property to prove an equivalence, and conversely.

Let $\phi := \exists i, j. \ \mathsf{T}(i, j) < \mathsf{R}'(k) \land \mathsf{input}@\mathsf{T}(i, j) = \mathsf{output}@\mathsf{R}(k) \land \mathsf{input}@\mathsf{R}'(k) = \mathsf{fst}(\mathsf{output}@\mathsf{T}(i, j)).$

Prove cond@R'(k) $\vdash \phi$ by EUF, which yields two cases:

- $T(i,j) < R'(k), \langle 0, n_R(k), fst(input@R'(k)) \rangle = \langle 0, input@T(i,j), n_T(i,j) \rangle \vdash \phi$ using obvious choices for existentials.
- $\mathsf{R}'(k') < \mathsf{R}'(k), \langle 0, ..., ... \rangle = \langle 1, ..., ... \rangle \vdash \phi$ absurd since 0 = 1.

Let $\phi := \exists i, j. \ \mathsf{T}(i, j) < \mathsf{R}'(k) \land \mathsf{input}@\mathsf{T}(i, j) = \mathsf{output}@\mathsf{R}(k) \land \mathsf{input}@\mathsf{R}'(k) = \mathsf{fst}(\mathsf{output}@\mathsf{T}(i, j)).$

Prove cond@R'(k) $\vdash \phi$ by EUF, which yields two cases:

- $T(i,j) < R'(k), \langle 0, n_R(k), fst(input@R'(k)) \rangle = \langle 0, input@T(i,j), n_T(i,j) \rangle \vdash \phi$ using obvious choices for existentials.
- $\mathsf{R}'(k') < \mathsf{R}'(k), \langle 0, ..., ... \rangle = \langle 1, ..., ... \rangle \vdash \phi$ absurd since 0 = 1.

Reasoning only relies on unforgeability of h, nothing to do with Xor! It also seems close to what a cryptographer would say.

Unlinkability for MW

Let $E(T) := \text{frame@}T \sim \text{frame@}T$.

Prove $\vdash_{\mathcal{M},\mathcal{S}} \mathsf{frame@}\tau \sim \mathsf{frame@}\tau$ by induction:

- Obvious if $\tau = init$.
- When τ = R(k): E(pred(R(k))) ⊢ frame@pred(R(k)), n_R(k) ~ frame@pred(R(k)), n_R(k) by freshness and R(k) < R(k) ∨ R'(k) < R(k) ⊢ ⊥.
- When $\tau = T(i, j)$: $E(\text{pred}(T(i, j))) \vdash \text{frame@pred}(T(i, j)), n_T(i, j), \text{id}(i) \oplus h(\dots, \text{key}(i)) \sim \text{frame@pred}(T(i, j)), n_T(i, j), \text{id}'(i, j) \oplus h(\dots, \text{key}'(i, j))$

by PRF, Xor and freshness.

 When τ = R'(k): E(pred(R'(k))) ⊢ frame@pred(R'(k)), if exec@R'(k) then output@R'(k) ~ frame@pred(R'(k)), if exec@R'(k) then output@R'(k)

using authentication lemmas to replace exec@R'(k) on both sides with formula that contains only public information,

followed by PRF, Xor and freshness.

(I'm omitting some complexities wrt. the output.)

The Squirrel prover 🐇

Sin Edit Outline Bulley Table emined Deed Cancel Male	emacs@thaima ∧ _ 0	×
Prile bott uppons burnes bons squirre Proc-General neip P™Goal II Retract ≪ Undo ► Next II Use ➤ Goto (分) all all home (%) Command © Interrup	pt 😉 Restart 🚏 Help	
hash h	[goal> Focused goal (1/1): System: default/both	
abstract ok : message abstract ko : message	forall (k:index), (condQR'(k) => (i i index), (T(i i) = D(k) if invetOT(i i) = subsetOP(k)))	
name key : index->message name n : index->message	exists (i,j:index), $((i,j) < n(k) $ on input $((i,j) = 0$ utput $(n(k))$	
channel cT channel cR		
<pre>process tag(i:index,j:index) = in(cR,x); out(cT,h(x,key(i)))</pre>		U
<pre>process reader(k:index) = out(cR,n(k)); in(cT,x);</pre>		L
<pre>if exists (i:index), x = h(n(k),key(i)) then B': out(cB.ok)</pre>	A proof assistant for our meta-logic	
else R'': out(cR,ko)	 About 15k lines of OCaml code, 	
<pre>system ((!_k R: reader(k)) (!_i !_j T: tag(i,j)) noal authentication R1 :</pre>	Proof General integration.	
<pre>forall k:index, cond@R'(k) => exists (i,j:index), T(i,j) < R'(k) && input@T(i,j) Proof</pre>	• Protocol specification in π -calculus style	
intros.		
euf Mo. exists i,j.	 Trace and equivalence properties. 	
Qed. -: naive-hash.sp Bot L36 (squirrel script +2 Scripting.)	 Basic automated reasoning, 	
	tactics and proof-search combinators.	

Summary of contributions

Squirrel

First-time mechanized proofs using CCSA approach:

- NSL, PA, Feldhofer, LAK, MW, SSH
- Hashes, signatures, encryptions, Xor & Diffie-Hellman
- Authentication, strong secrecy, unlinkability

Summary of contributions

Squirrel

First-time mechanized proofs using CCSA approach:

- NSL, PA, Feldhofer, LAK, MW, SSH
- Hashes, signatures, encryptions, Xor & Diffie-Hellman
- Authentication, strong secrecy, unlinkability

Comparison with other approaches

Computational verification: in between Cryptoverif (game-hopping) and Easycrypt (pRHL) in terms of automation; also expressivity trade-offs.

Summary of contributions

Squirrel

First-time mechanized proofs using CCSA approach:

- NSL, PA, Feldhofer, LAK, MW, SSH
- Hashes, signatures, encryptions, Xor & Diffie-Hellman
- Authentication, strong secrecy, unlinkability

Comparison with other approaches

Computational verification: in between Cryptoverif (game-hopping) and Easycrypt (pRHL) in terms of automation; also expressivity trade-offs.

Symbolic verification:

- Similarities with Tamarin: logic over traces, backward reasoning.
- Computational guarantees! also, no implicit assumptions.
- No automated attack finding.
- Less automated, but sometimes just as easy, even better for MW.

Foundations

- Truly unbounded guarantees: validity of meta-logic formulas only means security for each trace.
- Branching-time logic, e.g. for weak secrets or audits.
- Maintaining a coherent, usable implementation.
- Engineering trust: code generation, partial Coq certification.

Complex applications

- Protocols with state, oracles, compromises...
- Extensive models of deployed protocols e.g. Signal, TLS, Webauthn.
- Scalability issues: more automation (SMT), composition results.
- Bridging implementation and specification-level security: interoperable tools through standard computational semantics.