
Squirrel

Computer-Assisted Proofs of Protocols

in the Computational Model

David Baelde

LMF, ENS Paris-Saclay & CNRS, Université Paris-Saclay

April 16, 2021

Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

• security: secrecy, authenticity, no double-spending. . .

• privacy: anonymity, absence of tracking. . .

Frequent flaws at the hardware, software and specification levels.
Formal verification can help at all levels.

My focus: specifications of cryptographic protocols.

2/24

Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

• security: secrecy, authenticity, no double-spending. . .

• privacy: anonymity, absence of tracking. . .

Frequent flaws at the hardware, software and specification levels.
Formal verification can help at all levels.

My focus: specifications of cryptographic protocols.

2/24

Modelling protocols using process algebra
Examples on authentication protocols

Processes:

• R for sessions of reader role;

• T (k) for tag session with
identity parameter k .

System S := !R | ! new k . !T (k).

3/24

Modelling protocols using process algebra
Examples on authentication protocols

Processes:

• R for sessions of reader role;

• T (k) for tag session with
identity parameter k .

System S := !R | ! new k . !T (k).

Reachability properties (trace properties)

• Weak secrecy: for any trace of S , attacker does not learn k.

• Authentication: for any trace of S , readers only issue accept events
after the intended interaction with a tag.

3/24

Modelling protocols using process algebra
Examples on authentication protocols

Processes:

• R for sessions of reader role;

• T (k) for tag session with
identity parameter k .

System S := !R | ! new k . !T (k).

Equivalence properties (hypertrace properties)

• Anonymity: S | T (k1) ≈ S | T (k2) — they are indistinguishable.

• Strong unlinkability: S ≈ !R | ! new k . T (k).

3/24

Computational model
The mathematical setting for provable security in cryptography

01001001100

010
010

011
00

01001001100

01001001100 010
010

011
00

01
00
10
01
10
0

0100
1001

100 01001001100

Messages = bitstrings

Secrets = random samplings

Computations = PPTIME Turing machines

In general, properties only hold with overwhelming probability,
under some assumptions on cryptographic primitives.

Example (Unforgeability, EUF-CMA)

There is a negligible probability of success for the following game,
for any attacker A:

• Draw k uniformly at random.

• 〈u, v〉 := AO where O is the oracle x 7→ h(x , k).

• Succeed if u = h(v , k) and O has not been called on v .

4/24

Computational model
The mathematical setting for provable security in cryptography

01001001100

010
010

011
00

01001001100

01001001100 010
010

011
00

01
00
10
01
10
0

0100
1001

100 01001001100

Messages = bitstrings

Secrets = random samplings

Computations = PPTIME Turing machines

In general, properties only hold with overwhelming probability,
under some assumptions on cryptographic primitives.

Example (Unforgeability, EUF-CMA)

There is a negligible probability of success for the following game,
for any attacker A:

• Draw k uniformly at random.

• 〈u, v〉 := AO where O is the oracle x 7→ h(x , k).

• Succeed if u = h(v , k) and O has not been called on v .

4/24

Computational model
The mathematical setting for provable security in cryptography

01001001100

010
010

011
00

01001001100

01001001100 010
010

011
00

01
00
10
01
10
0

0100
1001

100 01001001100

Messages = bitstrings

Secrets = random samplings

Computations = PPTIME Turing machines

In general, properties only hold with overwhelming probability,
under some assumptions on cryptographic primitives.

Example (Unforgeability, EUF-CMA)

There is a negligible probability of success for the following game,
for any attacker A:

• Draw k uniformly at random.

• 〈u, v〉 := AO where O is the oracle x 7→ h(x , k).

• Succeed if u = h(v , k) and O has not been called on v .

4/24

Symbolic model
An idealized setting, also known as Dolev-Yao model

h(n,k
)

dec(x,k'')

sign
(d,p

sk)

n

enc(m,k')

P1

P2

P3

P4

PA

Messages = terms

Secrets = fresh constants (no probabilities)

Computations = equational theory

Example (Equational theories)

• Symmetric encryption: sdec(senc(x , y), y) =E x .

• Exclusive or: assoc., commut., x ⊕ 0 =E x and x ⊕ x =E 0.

• Hash function: no equation.
Thus h(u, k) =E h(v , k) implies u =E v ,
and h(u, k) indistinguishable from fresh name if k is private.

5/24

Symbolic model
An idealized setting, also known as Dolev-Yao model

h(n,k
)

dec(x,k'')

sign
(d,p

sk)

n

enc(m,k')

P1

P2

P3

P4

PA

Messages = terms

Secrets = fresh constants (no probabilities)

Computations = equational theory

Example (Equational theories)

• Symmetric encryption: sdec(senc(x , y), y) =E x .

• Exclusive or: assoc., commut., x ⊕ 0 =E x and x ⊕ x =E 0.

• Hash function: no equation.

Thus h(u, k) =E h(v , k) implies u =E v ,
and h(u, k) indistinguishable from fresh name if k is private.

5/24

Symbolic model
An idealized setting, also known as Dolev-Yao model

h(n,k
)

dec(x,k'')

sign
(d,p

sk)

n

enc(m,k')

P1

P2

P3

P4

PA

Messages = terms

Secrets = fresh constants (no probabilities)

Computations = equational theory

Example (Equational theories)

• Symmetric encryption: sdec(senc(x , y), y) =E x .

• Exclusive or: assoc., commut., x ⊕ 0 =E x and x ⊕ x =E 0.

• Hash function: no equation.
Thus h(u, k) =E h(v , k) implies u =E v ,
and h(u, k) indistinguishable from fresh name if k is private.

5/24

Verification in the symbolic model

Trace properties

Undecidable in general, some restrictions decidable.
Mature automated tools borrowing, e.g., from rewriting and logic.

• Casper, Proverif, AVISPA, Scyther, Tamarin
(Oxford, Inria Paris & Nancy, ETH Zürich, CISPA)

• Breaking/fixing/proving Google SSO, 3G/5G authentication,
Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.

Equivalence properties

• Bounded sessions: several tools and some decision procedures
SPEC, Apte, Akiss, DeepSec, SAT-Equiv (ANU, LSV, Inria Nancy)

• Unbounded sessions: diff-equivalence in Proverif and Tamarin

6/24

Verification in the symbolic model

Trace properties

Undecidable in general, some restrictions decidable.
Mature automated tools borrowing, e.g., from rewriting and logic.

• Casper, Proverif, AVISPA, Scyther, Tamarin
(Oxford, Inria Paris & Nancy, ETH Zürich, CISPA)

• Breaking/fixing/proving Google SSO, 3G/5G authentication,
Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.

Equivalence properties

• Bounded sessions: several tools and some decision procedures
SPEC, Apte, Akiss, DeepSec, SAT-Equiv (ANU, LSV, Inria Nancy)

• Unbounded sessions: diff-equivalence in Proverif and Tamarin

6/24

Unlinkability in the symbolic model
[B., Delaune & Hirschi, SP’16 and JCS’19] and [B., Delaune & Moreau, CSF’20]

Strong unlinkability for authentication protocols (e.g. RFID, e-passport)
expressed as equivalence between multiple- and single-session systems.

• First time formal proofs (and some attack discoveries)
for BAC, PACE, DAA, ABCDH, Feldhofer, OSK, LAK. . .
using Proverif and Tamarin.

Lessons

• Human guidance is required to reason about protocols with state.

• Limited support for Xor in Proverif and Tamarin:
cannot handle simple RFID protocol with Xor (MW).

• Limited Diffie-Hellman support in Proverif: misses attack on PACE.

7/24

Unlinkability in the symbolic model
[B., Delaune & Hirschi, SP’16 and JCS’19] and [B., Delaune & Moreau, CSF’20]

Strong unlinkability for authentication protocols (e.g. RFID, e-passport)
expressed as equivalence between multiple- and single-session systems.

• First time formal proofs (and some attack discoveries)
for BAC, PACE, DAA, ABCDH, Feldhofer, OSK, LAK. . .
using Proverif and Tamarin.

Lessons

• Human guidance is required to reason about protocols with state.

• Limited support for Xor in Proverif and Tamarin:
cannot handle simple RFID protocol with Xor (MW).

• Limited Diffie-Hellman support in Proverif: misses attack on PACE.

7/24

Computational soundness

h(n,k
)

dec(x,k'')

sign
(d,p

sk)

n

enc(m,k')

P1

P2

P3

P4

PA
?←→

01001001100

010
010

011
00

01001001100

01001001100 010
010

011
00

01
00
10
01
10
0

0100
1001

100 01001001100

Some computational soundness theorems show that, in some cases,
symbolic attackers account for all computational attacks.

They remain limited by strong assumptions.

• No sound symbolic abstraction of Xor.

• It seems hard to account for the nuanced properties of hash functions
using symbolic models.

Alternative: direct verification in the computational model.

• Cryptoverif, Easycrypt . . . and Squirrel.

8/24

Computational soundness

h(n,k
)

dec(x,k'')

sign
(d,p

sk)

n

enc(m,k')

P1

P2

P3

P4

PA
?←→

01001001100

010
010

011
00

01001001100

01001001100 010
010

011
00

01
00
10
01
10
0

0100
1001

100 01001001100

Some computational soundness theorems show that, in some cases,
symbolic attackers account for all computational attacks.

They remain limited by strong assumptions.

• No sound symbolic abstraction of Xor.

• It seems hard to account for the nuanced properties of hash functions
using symbolic models.

Alternative: direct verification in the computational model.

• Cryptoverif, Easycrypt . . . and Squirrel.

8/24

The CCSA approach:

Computationally Complete Symbolic Attacker

[Bana & Comon, CCS’14]

First-order logic over computational models

Terms interpreted as PPTIME machines

• Names = constants n, k interpreted as uniform samplings

• Primitives = function symbols interpreted as deterministic machines

• Attacker computations =
adversarial function symbols atti interpreted as PPTIME machines

• Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate ~u ∼ ~v interpreted as computational indistinguishability.

Example

• We have EQ(n,m) ∼ false and even EQ(n, att1(m)) ∼ false.

• We also have (~u ∼ ~v)⇒ (~u, n ∼ ~v ,m)
when the names n,m do not occur in the ground terms ~u, ~v .

10/24

First-order logic over computational models

Terms interpreted as PPTIME machines

• Names = constants n, k interpreted as uniform samplings

• Primitives = function symbols interpreted as deterministic machines

• Attacker computations =
adversarial function symbols atti interpreted as PPTIME machines

• Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate ~u ∼ ~v interpreted as computational indistinguishability.

Example

• We have EQ(n,m) ∼ false and even EQ(n, att1(m)) ∼ false.

• We also have (~u ∼ ~v)⇒ (~u, n ∼ ~v ,m)
when the names n,m do not occur in the ground terms ~u, ~v .

10/24

First-order logic over computational models

Terms interpreted as PPTIME machines

• Names = constants n, k interpreted as uniform samplings

• Primitives = function symbols interpreted as deterministic machines

• Attacker computations =
adversarial function symbols atti interpreted as PPTIME machines

• Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate ~u ∼ ~v interpreted as computational indistinguishability.

Example

• We have EQ(n,m) ∼ false

and even EQ(n, att1(m)) ∼ false.

• We also have (~u ∼ ~v)⇒ (~u, n ∼ ~v ,m)
when the names n,m do not occur in the ground terms ~u, ~v .

10/24

First-order logic over computational models

Terms interpreted as PPTIME machines

• Names = constants n, k interpreted as uniform samplings

• Primitives = function symbols interpreted as deterministic machines

• Attacker computations =
adversarial function symbols atti interpreted as PPTIME machines

• Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate ~u ∼ ~v interpreted as computational indistinguishability.

Example

• We have EQ(n,m) ∼ false and even EQ(n, att1(m)) ∼ false.

• We also have (~u ∼ ~v)⇒ (~u, n ∼ ~v ,m)
when the names n,m do not occur in the ground terms ~u, ~v .

10/24

First-order logic over computational models

Terms interpreted as PPTIME machines

• Names = constants n, k interpreted as uniform samplings

• Primitives = function symbols interpreted as deterministic machines

• Attacker computations =
adversarial function symbols atti interpreted as PPTIME machines

• Some symbols with fixed interpretation: true, false, EQ, etc.

Indistinguishability

Predicate ~u ∼ ~v interpreted as computational indistinguishability.

Example

• We have EQ(n,m) ∼ false and even EQ(n, att1(m)) ∼ false.

• We also have (~u ∼ ~v)⇒ (~u, n ∼ ~v ,m)
when the names n,m do not occur in the ground terms ~u, ~v .

10/24

Example: the MW protocol
[Molnar & Wagner, CCS’04]

Assume a PRF h(,).
Each tag Ti is associated to an identity idi and key keyi .
Reader R has access to database of all credentials.

R → Ti : nR

Ti → R : 〈nT , idi ⊕ h(〈0, nR , nT 〉, keyi)〉
R → Ti : idi ⊕ h(〈1, nR , nT 〉, keyi)

11/24

Example: the MW protocol
[Molnar & Wagner, CCS’04]

Assume a PRF h(,).
Each tag Ti is associated to an identity idi and key keyi .
Reader R has access to database of all credentials.

R → Ti : nR

Ti → R : 〈nT , idi ⊕ h(〈0, nR , nT 〉, keyi)〉
R → Ti : idi ⊕ h(〈1, nR , nT 〉, keyi)

Example (Interaction with a reader)

tinput
def
= att1(nR)

biaccept
def
= EQ

(
snd(tinput)⊕ idi , h(〈0, nR , fst(tinput)〉, keyi)

)
Authentication: false ∼ biaccept ?

11/24

Example: the MW protocol
[Molnar & Wagner, CCS’04]

Assume a PRF h(,).
Each tag Ti is associated to an identity idi and key keyi .
Reader R has access to database of all credentials.

R → Ti : nR

Ti → R : 〈nT , idi ⊕ h(〈0, nR , nT 〉, keyi)〉
R → Ti : idi ⊕ h(〈1, nR , nT 〉, keyi)

Example (Interaction with Ti and Tj)

oi
def
= 〈nT , idi ⊕ h(〈0, att1(. . .), nT 〉, keyi)〉

o ′j
def
= 〈n′

T , idj ⊕ h(〈0, att1(. . .), n′
T 〉, keyj)〉

Anonymity: oi , o
′
j ∼ oi , o

′
i ?

11/24

Axiomatizing primitives

Example (EUF-CMA axiom)

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ∼
(

EQ(s, h(t, k))
.⇒ (

.
∨u∈S EQ(u, t))

)
where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)

~v , h(t, k) ∼ ~v , if
.
∨u∈S EQ(u, t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in ~v , t.

Example (Information-hiding property of Xor)

12/24

Axiomatizing primitives

Example (EUF-CMA axiom)

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ∼
(

EQ(s, h(t, k))
.⇒ (

.
∨u∈S EQ(u, t))

)
where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)

~v , h(t, k) ∼ ~v , if
.
∨u∈S EQ(u, t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in ~v , t.

Example (Information-hiding property of Xor)

12/24

Axiomatizing primitives

Example (EUF-CMA axiom)

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ∼
(

EQ(s, h(t, k))
.⇒ (

.
∨u∈S EQ(u, t))

)
where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)

~v , h(t, k) ∼ ~v , if
.
∨u∈S EQ(u, t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in ~v , t.

Example (Information-hiding property of Xor)

~u, t ⊕ n ∼ ~u,m when n,m fresh and len(t) = len(n)

12/24

Axiomatizing primitives

Example (EUF-CMA axiom)

Axiom scheme that holds in all models where h satisfies EUF-CMA:

true ∼
(

EQ(s, h(t, k))
.⇒ (

.
∨u∈S EQ(u, t))

)
where S = { u | h(u, k) occurs in s, t} and k is only used in key position.

Example (PRF axiom)

~v , h(t, k) ∼ ~v , if
.
∨u∈S EQ(u, t) then h(t, k) else n

where n fresh, k used only as key and S is the set of hashes in ~v , t.

Example (Information-hiding property of Xor)

~u, t ⊕ n ∼ ~u, if len(t) = len(n) then m else (t ⊕ n) when n,m fresh

12/24

Verifying protocols using the CCSA logic

Assume some primitives and crypto assumptions.
Let Ax be the corresponding axiom schemes.

Computational indistinguishability

Consider protocols P and Q with bounded traces.

• Generate for each trace ti the verification goal ϕi := (~uti ∼ ~vti)
where ~uti are the messages that P outputs for that trace,
and similarly for ~vti and Q.

• Verify that Ax |= ϕi using any proof system for first-order logic.

Reachability properties

Consider a protocol with bounded traces and some reachability property.

• Generate for each trace ti a goal ϕti := (bti ∼ true).

• Verify that Ax |= ϕti .

13/24

Limitations of the CCSA logic

The CCSA approach has some practical limitations:

• So far, automatically verifying Ax |= ϕt remains infeasible.

• The methodology assumes a fixed bound b on protocol traces.

 Develop a meta-logic

meta-logic Φ +
Ψ′ Ψ′′

Ψ = Π

⇓ ⇓ ⇓

base logic ϕt1 , ϕt2 , . . . +

ψ′ ψ′′

ψ = πt1 , πt2 , . . .

14/24

Limitations of the CCSA logic

The CCSA approach has some practical limitations:

• So far, automatically verifying Ax |= ϕt remains infeasible.

• The methodology assumes a fixed bound b on protocol traces.

 Develop a meta-logic

meta-logic Φ

+
Ψ′ Ψ′′

Ψ = Π

⇓

⇓ ⇓

base logic ϕt1 , ϕt2 , . . . +

ψ′ ψ′′

ψ = πt1 , πt2 , . . .

14/24

Limitations of the CCSA logic

The CCSA approach has some practical limitations:

• So far, automatically verifying Ax |= ϕt remains infeasible.

• The methodology assumes a fixed bound b on protocol traces.

 Develop a meta-logic suitable for interactive proofs, independent of b.

meta-logic Φ +
Ψ′ Ψ′′

Ψ = Π

⇓ ⇓ ⇓

base logic ϕt1 , ϕt2 , . . . +

ψ′ ψ′′

ψ = πt1 , πt2 , . . .

14/24

The Squirrel Prover:

A Meta-Logic for Proving Protocols in the

Computational Model

[B., Delaune, Jacomme, Koutsos & Moreau, SP’21]

Representing protocols and their executions

In our framework a protocol is given by:

• a partially ordered set of actions;

• for each action, a condition and an output term;

• some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

• T(i , j) and T′(i , j) for session j of Ti

, with T(i , j) < T′(i , j)

• R(k) and R′(k) for session k of R

, with R(k) < R′(k)

Semantics:

• output@T(i , j)
def
= 〈nT (i , j), h(〈0, input@T(i , j), nT (i , j)〉, key(i))〉

• cond@R′(k)
def
= ∃i . snd(tinput)⊕ idi = h(〈0, nR(k), fst(tinput)〉, keyi)

• frame@A
def
= 〈exec@A, if exec@A then output@A, frame@pred(A)〉

16/24

Representing protocols and their executions

In our framework a protocol is given by:

• a partially ordered set of actions;

• for each action, a condition and an output term;

• some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

• T(i , j) and T′(i , j) for session j of Ti

, with T(i , j) < T′(i , j)

• R(k) and R′(k) for session k of R

, with R(k) < R′(k)

Semantics:

• output@T(i , j)
def
= 〈nT (i , j), h(〈0, input@T(i , j), nT (i , j)〉, key(i))〉

• cond@R′(k)
def
= ∃i . snd(tinput)⊕ idi = h(〈0, nR(k), fst(tinput)〉, keyi)

• frame@A
def
= 〈exec@A, if exec@A then output@A, frame@pred(A)〉

16/24

Representing protocols and their executions

In our framework a protocol is given by:

• a partially ordered set of actions;

• for each action, a condition and an output term;

• some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

• T(i , j) and T′(i , j) for session j of Ti , with T(i , j) < T′(i , j)

• R(k) and R′(k) for session k of R, with R(k) < R′(k)

Semantics:

• output@T(i , j)
def
= 〈nT (i , j), h(〈0, input@T(i , j), nT (i , j)〉, key(i))〉

• cond@R′(k)
def
= ∃i . snd(tinput)⊕ idi = h(〈0, nR(k), fst(tinput)〉, keyi)

• frame@A
def
= 〈exec@A, if exec@A then output@A, frame@pred(A)〉

16/24

Representing protocols and their executions

In our framework a protocol is given by:

• a partially ordered set of actions;

• for each action, a condition and an output term;

• some more things if mutable variables are considered.

We use indices to represent unbounded sets of actions and messages.

Example (MW)

Actions:

• T(i , j) and T′(i , j) for session j of Ti , with T(i , j) < T′(i , j)

• R(k) and R′(k) for session k of R, with R(k) < R′(k)

Semantics:

• output@T(i , j)
def
= 〈nT (i , j), h(〈0, input@T(i , j), nT (i , j)〉, key(i))〉

• cond@R′(k)
def
= ∃i . snd(tinput)⊕ idi = h(〈0, nR(k), fst(tinput)〉, keyi)

• frame@A
def
= 〈exec@A, if exec@A then output@A, frame@pred(A)〉

16/24

Meta-logic terms and formulas

Syntax

Meta-formulas Φ feature indices, timestamps, macros,
quantifications over timestamp and index variables.

Example (Authentication for arbitrary traces of MW protocol)

∀k. cond@R′(k)⇒ ∃i , j . T(i , j) < R′(k) ∧ input@T(i , j) = output@R(k)

Semantics

Given protocol P and trace model T, interpret Φ as base logic term (Φ)TP .

• Indices and timestamps interpreted in finite domains.

• Interpretation of < wrt. a fixed trace of executed actions.

Meta-formula Φ is valid wrt. P when M |= (Φ)TP ∼ true for all T and M.

17/24

Meta-logic terms and formulas

Syntax

Meta-formulas Φ feature indices, timestamps, macros,
quantifications over timestamp and index variables.

Example (Authentication for arbitrary traces of MW protocol)

∀k. cond@R′(k)⇒ ∃i , j . T(i , j) < R′(k) ∧ input@T(i , j) = output@R(k)

Semantics

Given protocol P and trace model T, interpret Φ as base logic term (Φ)TP .

• Indices and timestamps interpreted in finite domains.

• Interpretation of < wrt. a fixed trace of executed actions.

Meta-formula Φ is valid wrt. P when M |= (Φ)TP ∼ true for all T and M.

17/24

Meta-logic sequents and proof systems

Reachability properties

Sequents Γ `P Φ where Γ is a multiset of meta-formulas, P a protocol.
Valid when, for all T, the base logic formula (∧Γ⇒ φ)TP ∼ true is valid.

• Inference rules of standard classical first-order logic.

• Reasoning about ordering on timestamps, e.g. induction.

• Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents . . . `P,P ′ ~u ∼ ~v for protocols P and P ′.
Valid when, for all T, the base logic formula (~u)TP ∼ (~v)TP ′ is valid.
Protocols P and P ′ are indistinguishable when `P,P ′ frame@t ∼ frame@t.

The two proof systems interact:
use reachability property to prove an equivalence, and conversely.

18/24

Meta-logic sequents and proof systems

Reachability properties

Sequents Γ `P Φ where Γ is a multiset of meta-formulas, P a protocol.
Valid when, for all T, the base logic formula (∧Γ⇒ φ)TP ∼ true is valid.

• Inference rules of standard classical first-order logic.

• Reasoning about ordering on timestamps, e.g. induction.

• Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents . . . `P,P ′ ~u ∼ ~v for protocols P and P ′.
Valid when, for all T, the base logic formula (~u)TP ∼ (~v)TP ′ is valid.

Protocols P and P ′ are indistinguishable when `P,P ′ frame@t ∼ frame@t.

The two proof systems interact:
use reachability property to prove an equivalence, and conversely.

18/24

Meta-logic sequents and proof systems

Reachability properties

Sequents Γ `P Φ where Γ is a multiset of meta-formulas, P a protocol.
Valid when, for all T, the base logic formula (∧Γ⇒ φ)TP ∼ true is valid.

• Inference rules of standard classical first-order logic.

• Reasoning about ordering on timestamps, e.g. induction.

• Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents . . . `P,P ′ ~u ∼ ~v for protocols P and P ′.
Valid when, for all T, the base logic formula (~u)TP ∼ (~v)TP ′ is valid.
Protocols P and P ′ are indistinguishable when `P,P ′ frame@t ∼ frame@t.

The two proof systems interact:
use reachability property to prove an equivalence, and conversely.

18/24

Meta-logic sequents and proof systems

Reachability properties

Sequents Γ `P Φ where Γ is a multiset of meta-formulas, P a protocol.
Valid when, for all T, the base logic formula (∧Γ⇒ φ)TP ∼ true is valid.

• Inference rules of standard classical first-order logic.

• Reasoning about ordering on timestamps, e.g. induction.

• Liftings of CCSA axioms, in particular crypto. assumptions.

Equivalence properties

Sequents . . . `P,P ′ ~u ∼ ~v for protocols P and P ′.
Valid when, for all T, the base logic formula (~u)TP ∼ (~v)TP ′ is valid.
Protocols P and P ′ are indistinguishable when `P,P ′ frame@t ∼ frame@t.

The two proof systems interact:
use reachability property to prove an equivalence, and conversely.

18/24

An authentication goal for MW

Let φ := ∃i , j . T(i , j) < R′(k) ∧ input@T(i , j) = output@R(k)
∧ input@R′(k) = fst(output@T(i , j)).

Prove cond@R′(k) ` φ by EUF, which yields two cases:

• T(i , j) < R′(k), 〈0, nR(k), fst(input@R′(k))〉 = 〈0, input@T(i , j), nT (i , j)〉 ` φ
using obvious choices for existentials.

• R′(k ′) < R′(k), 〈0, , 〉 = 〈1, , 〉 ` φ absurd since 0 = 1.

Reasoning only relies on unforgeability of h, nothing to do with Xor!
It also seems close to what a cryptographer would say.

19/24

An authentication goal for MW

Let φ := ∃i , j . T(i , j) < R′(k) ∧ input@T(i , j) = output@R(k)
∧ input@R′(k) = fst(output@T(i , j)).

Prove cond@R′(k) ` φ by EUF, which yields two cases:

• T(i , j) < R′(k), 〈0, nR(k), fst(input@R′(k))〉 = 〈0, input@T(i , j), nT (i , j)〉 ` φ
using obvious choices for existentials.

• R′(k ′) < R′(k), 〈0, , 〉 = 〈1, , 〉 ` φ absurd since 0 = 1.

Reasoning only relies on unforgeability of h, nothing to do with Xor!
It also seems close to what a cryptographer would say.

19/24

Unlinkability for MW

Let E (T) := frame@T ∼ frame@T .
Prove `M,S frame@τ ∼ frame@τ by induction:

• Obvious if τ = init.

• When τ = R(k):
E (pred(R(k))) ` frame@pred(R(k)), nR(k) ∼ frame@pred(R(k)), nR(k)
by freshness and R(k) < R(k) ∨ R′(k) < R(k) ` ⊥.

• When τ = T(i , j):
E (pred(T(i , j))) ` frame@pred(T(i , j)), nT (i , j), id(i)⊕ h(. . . , key(i)) ∼

frame@pred(T(i , j)), nT (i , j), id’(i , j)⊕ h(. . . , key’(i , j))
by PRF, Xor and freshness.

• When τ = R′(k):
E (pred(R′(k))) ` frame@pred(R′(k)), if exec@R′(k) then output@R′(k) ∼

frame@pred(R′(k)), if exec@R′(k) then output@R′(k)

using authentication lemmas to replace exec@R′(k) on both sides with
formula that contains only public information,
followed by PRF, Xor and freshness.

(I’m omitting some complexities wrt. the output.)

20/24

The Squirrel prover

A proof assistant for our meta-logic

• About 15k lines of OCaml code,
Proof General integration.

• Protocol specification in π-calculus style.

• Trace and equivalence properties.

• Basic automated reasoning,
tactics and proof-search combinators.

21/24

Summary of contributions

Squirrel

First-time mechanized proofs using CCSA approach:

• NSL, PA, Feldhofer, LAK, MW, SSH

• Hashes, signatures, encryptions, Xor & Diffie-Hellman

• Authentication, strong secrecy, unlinkability

Comparison with other approaches

Computational verification: in between Cryptoverif (game-hopping) and
Easycrypt (pRHL) in terms of automation; also expressivity trade-offs.

Symbolic verification:

• Similarities with Tamarin: logic over traces, backward reasoning.

• Computational guarantees! also, no implicit assumptions.

• No automated attack finding.

• Less automated, but sometimes just as easy, even better for MW.

22/24

Summary of contributions

Squirrel

First-time mechanized proofs using CCSA approach:

• NSL, PA, Feldhofer, LAK, MW, SSH

• Hashes, signatures, encryptions, Xor & Diffie-Hellman

• Authentication, strong secrecy, unlinkability

Comparison with other approaches

Computational verification: in between Cryptoverif (game-hopping) and
Easycrypt (pRHL) in terms of automation; also expressivity trade-offs.

Symbolic verification:

• Similarities with Tamarin: logic over traces, backward reasoning.

• Computational guarantees! also, no implicit assumptions.

• No automated attack finding.

• Less automated, but sometimes just as easy, even better for MW.

22/24

Summary of contributions

Squirrel

First-time mechanized proofs using CCSA approach:

• NSL, PA, Feldhofer, LAK, MW, SSH

• Hashes, signatures, encryptions, Xor & Diffie-Hellman

• Authentication, strong secrecy, unlinkability

Comparison with other approaches

Computational verification: in between Cryptoverif (game-hopping) and
Easycrypt (pRHL) in terms of automation; also expressivity trade-offs.

Symbolic verification:

• Similarities with Tamarin: logic over traces, backward reasoning.

• Computational guarantees! also, no implicit assumptions.

• No automated attack finding.

• Less automated, but sometimes just as easy, even better for MW.

22/24

Future work on/with Squirrel

Foundations

• Truly unbounded guarantees:
validity of meta-logic formulas only means security for each trace.

• Branching-time logic, e.g. for weak secrets or audits.

• Maintaining a coherent, usable implementation.

• Engineering trust: code generation, partial Coq certification.

Complex applications

• Protocols with state, oracles, compromises. . .

• Extensive models of deployed protocols e.g. Signal, TLS, Webauthn.

• Scalability issues: more automation (SMT), composition results.

• Bridging implementation and specification-level security:
interoperable tools through standard computational semantics.

23/24

24/24

