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Prologue



Linear Codes for Telecommunication

linear expansion
data
k

-

decoding
data? �

codeword
n > k

noisy codeword �

?

noisy channel

[Shannon, 1948] (for a binary symmetric channel of error rate p):

Decoding probability −→ 1 if
k

n
= R < 1− h(p)

(h(p) = −p log2 p− (1− p) log2(1− p) the binary entropy function)

Codes of rate R can correct up to λn errors (λ = h−1(1−R))

For instance 11% of errors for R = 0.5

Non constructive −→ no poly-time algorithm for decoding in general
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Random Codes Are Hard to Decode

When the linear expansion is random:

• Decoding is NP-complete [Berlekamp, McEliece & van Tilborg,
78]

• Even the tiniest amount of error is (believed to be) hard to re-
move. Decoding nε errors is conjectured difficult on average for
any ε > 0 [Alekhnovich, 2003].

• All known generic decoding algorithm have an exponential com-
plexity even with access to a quantum computer
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Codes with Good Decoders Exist

Coding theory is about finding “good” codes (i.e. linear expansions)

• alternant codes have a poly-time decoder for Θ
(

n

logn

)
errors

• some classes of codes have a poly-time decoder for Θ(n) errors
(algebraic geometry, expander graphs, concatenation, . . . )
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Linear Codes for Cryptography

linear expansion
plaintext

k

-

decoding
plaintext �

codeword
n > k

ciphertext �

?

intentionally add errors

• If a random linear code is used, no one can decode efficiently
• If a “good” code is used, anyone who knows the structure has
access to a fast decoder

Assuming that the knowledge of the linear expansion does not reveal
the code structure:
• The linear expansion is public and anyone can encrypt
• The decoder is known to the legitimate user who can decrypt
• For anyone else, the code looks random
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Postquantum Cryptography



Need for Postquantum Cryptographic Primitives

Most of the public-key cryptography deployed today is vulnerable to
quantum computer (Shor, Grover, . . . )

For long term security, new cryptographic solutions are required for
public-key encryption, key exchange mechanisms, and digital signa-
tures

Scientific communities, governmental institutions, standardization bod-
ies throughout the world are aware of this

→ NIST call for postquantum primitives
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Postquantum Standardization

NIST call for postquantum primitives started in 2018

• Digital Signature

• Public-Key Encryption/Key Exchange

Three code-based candidates in NIST’s 3rd round (all Encryption/Key
Exchange):

• one finalist, Classic McEliece

• two alternate candidates, BIKE and HQC
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Code-Based Cryptography



McEliece Public-key Encryption Scheme – Overview

Let F be a family of t-error correcting q-ary linear [n, k] codes
e.g. irreducible binary Goppa codes [McEliece, 1978]

Key generation:

pick C ∈ F →

 Public Key: G ∈ Fk×nq , a generator matrix of C
Secret Key: Φ : Fnq → C, a t-bounded decoder

Encryption:

 EG : Fkq → Fnq
x 7→ xG+ e

 with e random of weight t

Decryption:

 DΦ : Fnq → Fkq ∪ {⊥}
xG+ e 7→ x

 derive x from
Φ(xG+ e) = xG

G ∈ Fk×nq a generator matrix: C =
{
xG | x ∈ Fkq

}
Φ is t-bounded: ∀(c, e) ∈ C × Fnq , |e| ≤ t⇒ Φ(c+ e) = c
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Niederreiter Public-key Encryption Scheme – Overview

Let F be a family of t-error correcting q-ary linear [n, k] codes
[Niederreiter, 1986]

Key generation: pick C ∈ F

→

 Public Key: H ∈ F(n−k)×n
q , a parity check matrix of C

Secret Key: Ψ : Frq → Fnq , a t-bounded H-syndrome decoder

Encryption:

 EH : Sn(0, t) → Fn−kq

e 7→ eHT



Decryption:

 DΨ : Fn−kq → Sn(0, t) ∪ {⊥}
eHT 7→ e = Ψ(eHT )


H ∈ F(n−k)×n

q a parity check matrix: C =
{
c ∈ Fnq | cHT = 0

}
Ψ is t-bounded: ∀e ∈ Fnq , |e| ≤ t⇒ Ψ(eHT ) = e
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Instances of the
McEliece/Niederreiter Scheme



Irreducible Binary Goppa Codes

System parameters:
• m > 0 an integer → extension field F2m

• n ≤ 2m the code length
• 0 < t < n/m the error correcting capability
• k = n− tm the code dimension as a subspace of Fn2

Goppa code:
• g(x) ∈ F2m[x] monic, irreducible, of degree t
• L = (α1, . . . , αn) distinct elements of F2m

Γ(L, g) =
{
a ∈ Fn2 | aH̃

T = 0
}
, H̃ =



1
g(α1) · · ·

1
g(αn)

α1
g(α1) · · ·

αn
g(αn)

... ...
αt−1

1
g(α1) · · ·

αt−1
n

g(αn)
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Irreducible Binary Goppa Codes

Key generation:
• build a binary parity check matrix Ĥ ∈ Ftm×n2 from H̃

(each αij/g(αj) ∈ F2m in H̃ becomes a column vector in Fm2 )
• Compute its systematic form H = (In−k | T ) = SĤ

• Private key: (g, α1, . . . , αn) ∈ F2m[x]× Fn2m

• Public key: T ∈ F(n−k)×k
2

Decoding: in the polynomial ring F2m[x]

• Compute a syndrome S(z) =
2t−1∑
i=0

siz
i with si =

n−k∑
j=1

cjα
i
j

g(αj)2

• Solve the equation S(z)σ(z) = ω(z) mod z2t with

 degσ ≤ t
degω < t

• Find the roots of σ(z), the error e = (e1, . . . , en) ∈ Fn2 verifies

ej 6= 0⇔ σ(α−1
j ) = 0
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Irreducible Binary Goppa Codes

ciphertext size in bits
m,n, k, t McEliece Niederreiter key size security

10,1024,524,50 1024 500 32 kB 52
12,4096,3424,56 4096 672 288 kB 128

13,8192,6528,128 8192 1664 1358 kB 256

Security assumptions:
• Pseudorandomness of Goppa codes
(the public key T is computationally indistinguishable from a ran-
dom uniform binary matrix of same size)
• Hardness of decoding
(decoding t errors in a random binary linear [n, k] code is in-
tractable)

→ Classic McEliece NIST proposal
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QC-MDPC Codes

Quasi-Cyclic Moderate Density Parity Check codes

Hsecret =

h0 h1

� � h0, h1 ∈ R = F2[x]/(xr − 1) sparse

Hpublic = �
h1

1
h = h−1

0 h1 ∈ R dense

binary circulant r × r matrices are isomorphic to R = F2[x]/(xr − 1)

The sparse parity check matrix Hsecret allows decoding

The dense parity check matrix Hpublic is indistinguishable from random
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QC-MDPC Codes

Quasi-Cyclic Moderate Density Parity Check codes

Hsecret =

h0 h1

� � , Hpublic = �
h1

1

System parameters:
• r the block size, n = 2r the code length
• w the row weight, w ≈

√
n

• t the error weight, t ≈
√
n

efficient decoding possible as long as w · t / n

Key generation:
• Private key: (h0, h1) ∈ R2, |h0| = |h1| = w/2

• Public key: h = h−1
0 h1 ∈ R
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QC-MDPC Codes

Bit Flipping Decoding:

Input: s ∈ Fr2, H ∈ Fr×n2 . Hj the j-th column of H
e← 0n

repeat
s′ ← s− eHT

T ← threshold(context)

for j = 1, . . . , n do
if
∣∣∣s′ ∩Hj∣∣∣ ≥ T then . # unsatisfied equations involving j

ej ← ej + 1

until s = eHT

return e
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QC-MDPC Codes

size in bits
r, w, t block key security

12 323,142,134 12 323 12 323 128
24 659,206,199 24 659 24 659 192
40 973,274,264 40 973 40 973 256

Security assumptions:
• Hardness of quasi-cyclic codeword finding
(the public key h is computationally indistinguishable from a ran-
dom uniform element of R)
• Hardness of quasi-cyclic decoding
(decoding t errors in a random binary quasi-cyclic [n, r] code is
intractable)

→ BIKE NIST proposal
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The Third Round Code-Based
NIST Candidates



The Third Round Code-Based NIST Candidates

• Classic McEliece

An instance of Niederreiter’s scheme using Goppa codes

• BIKE

An instance of Niederreiter’s scheme using QC-MDPC codes

• HQC

Derives from [Alekhnovich, 2003] rather than [McEliece, 78]

No trapdoor decoder, the secret is a sparse vector
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Classic McEliece KEM

Setup: parameters m,n, t, k = n−mt, `, hash function H with output
in {0,1}`

KeyGen Output: sk,pk
g

$← monic irreducible polynomials of degree t
(α1, . . . , αn) $← distinct elements of F2m

H̃ ←
(
αij/g(αj)

)
0≤i<t,1≤j≤n

. ∈ Ft×n2m

Ĥ ← expand(H̃) . ∈ Ftm×n2
H = ((In−k | T )← GaussElim(Ĥ) . if fail, restart from top

s
$←{0,1}`

sk = ((g, α1, . . . , αn), s) . we denote Γ = (g, α1, . . . , αn)
pk = T ∈ F(n−k)×k

2 . we denote H = (In−k | T )

Encaps Input: pk
Output: c = (c0, c1) ∈ Fn−k2 × {0,1}`, K ∈ {0,1}`

e
$←{e ∈ Fn2 | |e| = t}

c = (c0, c1)← (eHT ,H(2, e))
K ← H(1, e, c)
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Classic McEliece KEM

Decaps Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← GoppaDecode(c0,Γ)

if e = ⊥ or H(2, e) 6= c1 then K ← H(0, s, c) else K ← H(1, e, c)

GoppaDecode:
• Compute an algebraic syndrome (c0,Γ)→ S(z)

• Solve the key equation S(z)→ σ(z)

• Find the roots of σ(z)→ error locations

N. Sendrier – Code-Based Cryptography 18/39



BIKE

Setup: parameters r, w, t, `, hash functions K, L with output in {0,1}`

and H with output in {e = (e0, e1) ∈ R2 | |e0|+ |e1| = t}

KeyGen Output: sk,pk

(h0, h1) $←{(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
h← h1h

−1
0

σ
$←{0,1}`

sk = ((h0, h1), σ)

pk = h

Encaps Input: pk

Output: c = (c0, c1) ∈ R× {0,1}`, K ∈ {0,1}`

m
$←{0,1}`

(e0, e1)← H(m)

c← (e0 + e1h,m⊕ L(e0, e1))

K ← K(m, c)
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BIKE

Decaps Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← decoder(c0h0, h0, h1)

m← c1 ⊕ L(e)

if e = H(m) then K ← K(m, c) else K ← K(σ, c)

decoder() is any variant of bit flipping decoding. It is prone to de-
coding failure. The decoding failure rate (DFR) is defined as

DFR(decoder) = Pr[(e0, e1) 6= decoder(e0h0 + e1h1, h0, h1)]

(probability over all errors (e0, e1) and all keys (h0, h1))
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HQC KEM

Let R = F2[X]/(Xn − 1), let Ew = {z ∈ R | |z| = w}

Setup: parameters n,w,we, wr, k, δ, hash function K with output in
{0,1}k and H with output in Ewe × E2

wr, G the generator matrix of a
δ-error correcting code

KeyGen Output: sk,pk
h

$←R
(x, y) $←E2

w
s← x+ hy

sk = (x, y)
pk = (h, s)

Encaps Input: pk
Output: (u, v) ∈ R2, K ∈ {0,1}k
m

$←{0,1}k
(e, r1, r2)← H(m) . |e| = we, |r1| = |r2| = wr, sparse
(u, v)← (r1 + hr2,mG+ sr2 + e)
K ← K(m, (u, v))

N. Sendrier – Code-Based Cryptography 21/39



HQC KEM

Decaps Input: sk, (u, v) ∈ R2

Output: K ∈ {0,1}k

m← decode(v − uy)

(e, r1, r2)← H(m)

if (u, v) 6= (r1 + hr2,mG+ sr2 + e) then abort
else K ← K(m, (u, v))

decode() is a decoder for the code C spanned by G. This code is part
of the system setup, it is public as well as its decoding procedure. It’s
failure rate however is relevant for the security analysis.
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Security



Ephemeral Keys versus Static Keys

Alice Bob

samples sk,pk

samples mm← Decsk(c)

pk

c = Encpk(m)

Shared key: K = Hash(m)

Ephemeral Keys: the key pair (sk,pk) is used only once
• allows forward secrecy
• decryption failure doesn’t impact security (IND-CPA is enough)
• only synchronous protocols (e.g. TLS)

Static Keys: the key pair (sk,pk) is used multiple times
• reduces communication cost
• decryption failure must be negligible (IND-CCA is required)
• allows asynchronous protocols (e.g. email)
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Security Models

IND-CPA

Indistinguishability under chosen plaintext attack

Guaranteed by computational assumptions alone

Enough for ephemeral keys

IND-CCA

Indistinguishability under adaptive chosen ciphertext attack

Requires negligible decryption failure

Relevant (only?) for static keys
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Security Assumptions

IND-CPA IND-CCA

Classic McEliece
• Pseudorandomness of
Goppa codes

• Hardness of decoding

• Pseudorandomness of
Goppa codes

• Hardness of decoding

BIKE

• Hardness of QC decoding

• Hardness of QC codeword
finding

• Hardness of QC decoding

• Hardness of QC codeword
finding

• Negligible decoding failure
(for QC-MDPC codes)

HQC
• Hardness of QC decoding • Hardness of QC decoding

• Negligible decoding failure
(for any code)
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Complexity



Space Complexity (IND-CCA Security)

pk size Block size Sec. level
261 KB 128 bytes 1

Classic McEliece 525 KB 188 bytes 3
1.3 MB 226 bytes 5

1 541 bytes 1 573 bytes 1
BIKE 3 083 bytes 3 115 bytes 3

5 122 bytes 5 154 bytes 5

3 125 bytes 6 234 bytes 1
HQC 5 884 bytes 11 752 bytes 3

8 897 bytes 17 778 bytes 5
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Time Complexity

Software:
• BIKE and HQC are comparable, with an advantage to BIKE
(ranges from a few 100k to a few mega cycles)
• Classic McEliece:
• key generation is ridiculously slow in software (several 100 mega
cycles)
• encaps/decaps are very fast (50k to a few 100k cycles)

Fair comparison is difficult, but third party implementation are ap-
pearing and things might clarify in the coming years
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Secure Implementation



Secure Implementations

All remaining code-based NIST candidates feature constant-time im-
plementation by design:
• specifications allow constant-time implementation
• constant-time optimized software implementation are available
(for some parameter sets)
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Classic McEliece – KeyGen

KeyGen
Output: sk,pk
g

$← monic irreducible polynomials of degree t
(α1, . . . , αn) $← distinct elements of F2m

H̃ ←
(
αij/g(αj)

)
0≤i<t,1≤j≤n

. ∈ Ft×n2m

Ĥ ← expand(H̃) . ∈ Ftm×n2
H = ((In−k | T )← GaussElim(Ĥ) . if fail, restart from top

s
$←{0,1}`

sk = ((g, α1, . . . , αn), s)
pk = T ∈ F(n−k)×k

2

Key operations:
• Arithmetic in the extension field F2m

• Gaussian elimination over a binary matrix is the bottleneck
> 3 failures on average → “Semi-systematic” form could avoid
that, implies an evolution of the specification
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Classic McEliece – Encaps

Encaps

Input: pk

Output: c = (c0, c1) ∈ Fn−k2 × {0,1}`, K ∈ {0,1}`

e
$←{e ∈ Fn2 | |e| = t}

c = (c0, c1)← (eHT ,H(2, e))

K ← H(1, e, c)

Key operations:
• Binary linear algebra
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Classic McEliece – Decaps

Decaps

Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← GoppaDecode(c0,Γ)

if e = ⊥ or H(2, e) 6= c1 then K ← H(0, s, c) else K ← H(1, e, c)

GoppaDecode:
1. Compute an algebraic syndrome (c0,Γ)→ S(z)

2. Solve the key equation S(z)→ σ(z)

3. Find the roots of σ(z)→ error locations

Key operations:
• Syndrome computation and root finding use an ad-hoc FFT
• Key equation is solved by the Berlekamp-Massey algorithm
• Permutation is implemented through a Beneš network

N. Sendrier – Code-Based Cryptography 31/39



BIKE – KeyGen

KeyGen

Output: sk,pk

(h0, h1) $←{(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
h← h1h

−1
0

σ
$←{0,1}`

sk = ((h0, h1), σ)

pk = h

Key operations:
• Arithmetic in R = F2[x]/(xr − 1)

bottleneck is the inversion
• Sampling constant weight words
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BIKE – Encaps

Encaps

Input: pk

Output: c = (c0, c1) ∈ R× {0,1}`, K ∈ {0,1}`

m
$←{0,1}`

(e0, e1)← H(m)

c← (e0 + e1h,m⊕ L(e0, e1))

K ← K(m, c)

Key operations:
• Arithmetic in R = F2[x]/(xr − 1)

• sampling constant weight words (hash function H)
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BIKE – Decaps

Decaps

Input: sk, c = (c0, c1)

Output: K ∈ {0,1}`

e← decoder(c0h0, h0, h1)

m← c1 ⊕ L(e)

if e = H(m) then K ← K(m, c) else K ← K(σ, c)

Key operations:
• Arithmetic in R = F2[x]/(xr − 1)

• Sampling constant weight words (hash function H)
• Bit flipping decoding
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BIKE – Bit Flipping

Bit Flipping Decoding
Input: s ∈ Fr2, H ∈ Fr×n2
1: e← 0n

2: repeat a fixed number of times
3: s′ ← s− eHT

4: T ← threshold(context)
5: for j = 1, . . . , n do
6: if

∣∣∣s′ ∩Hj∣∣∣ ≥ T then
7: ej ← ej + 1

8: until
9: return e

The actual algorithm is different but key operation are the same:
• Syndrome update, instruction 3:
• Counters computation, instruction 6:
in practice all counters

∣∣∣s′ ∩Hj∣∣∣ are computed at once
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HQC KEM – KeyGen

KeyGen

Output: sk,pk

h
$←R

(x, y) $←E2
w

s← x+ hy

sk = (x, y)

pk = (h, s)

Key operations:
• Arithmetic in R = F2[x]/(xn − 1)

• Sampling constant weight words
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HQC KEM – Encaps

Encaps

Input: pk

Output: (u, v) ∈ R2, K ∈ {0,1}k

m
$←{0,1}k

(e, r1, r2)← H(m)

(u, v)← (r1 + hr2,mG+ sr2 + e)

K ← K(m, (u, v))

Key operations:
• Arithmetic in R = F2[x]/(xn − 1)

• (Linear algebra over F2)
• Sampling constant weight words
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HQC KEM – Decaps

Decaps Input: sk, (u, v) ∈ R2

Output: K ∈ {0,1}k

m← decode(v − uy)

(e, r1, r2)← H(m)

if (u, v) 6= (r1 + hr2,mG+ sr2 + e) then abort
else K ← K(m, (u, v))

Key operations:
• Arithmetic in R = F2[x]/(xn − 1)

• (Linear algebra over F2)
• Sampling constant weight words
• decoding in the code C spanned by G
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Conclusion

Code-based NIST candidates enjoy some nice features

• Specifications are simple

• Implementation are efficient

• Classic McEliece is well suited to static key

• BIKE and HQC are well suited to ephemeral key
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Thank you for your attention


