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Why looking at Symbolic execution (performance)?
Symbolic execution is a middle ground between formal methods and traditional testing

● Can, in theory, provide complete coverage

● And therefore prove absence of (some) bugs (categories)?

Symbolic execution was proposed in: 

● “Symbolic Execution and Program Testing“, J. King,  CACM, 1976

Many tools exist KLEE, S2E, Angr, Triton, BinSec… with different goals and properties

Performance improved a lot with constraint solvers improvements in recent years
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Combining Fuzzing with Symbolic Execution
This was first propose in the “Driller” paper 

“Driller: Augmenting Fuzzing Through Selective Symbolic Execution”, NDSS 2016

● Fuzzers are very fast but may miss some paths “if(X==0xDEADBEEF)”

● Symbolic execution alone is slow and gets stuck (state explosion, loops)

Combining Fuzzing and concolic execution: best of both worlds?

● Top 3 teams of the Cyber Grand Challenge used a combination of fuzzing and 

Symbolic Execution

● But performance problem with Symbolic execution engines… 
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Symbolic execution
● Trace computations in a program, 

building up symbolic formulas

● Solving symbolic expressions:

○ At branches to check if a branch 

is feasible

○ If a corruption (or fault) is 

detected, solve constraints and 

generate a test input

King: Symbolic Execution and Program Testing 5



Symbolic Execution
Explore programs by keeping track of computations in terms of inputs

When on one path only: “Concolic mode”

Target program

void f(int x, int y) {

   int z = 2*y;

   if (x == 100000) {

       if (x < z) {

           assert(0); /* error */

       }

   }

}

symbolic execution
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Design space

Previous work marked in the diagram:

① Kim et al.: Testing intermediate representations for binary analysis

② Palikareva and Cadar: Multi-solver support in symbolic execution

     and Liu et al.: A comparative study of incremental constraint solving approaches in symbolic execution

7



Intermediate representation
● Abstract representation of a program

○ Often in static single assignment form (SSA)

○ Small instruction set

● Designed for different purposes

○ Compilers: LLVM bitcode

○ Dynamic instrumentation: VEX

○ Binary analysis: BIL, REIL

○ Many more; see Kim et al.: Testing 

Intermediate Representations for Binary 

Analysis

define dso_local float
@avg(i32, i32) local_unnamed_addr #0
{
  %3 = sitofp i32 %0 to double
  %4 = sitofp i32 %1 to double
  %5 = fmul double %4, 5.000000e-01
  %6 = fadd double %5, %3
  %7 = fptrunc double %6 to float
  ret float %7
}

LLVM bitcode generated by Clang
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Research questions
● What is the impact of generating 

IR from source code or binaries?

● Is one IR more suitable than 

another? What about no IR?
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Experiments

Execution speed

● How fast can we execute the IR?

● Crucial property according to Yun et al.

Query complexity

● How complex are the resulting SMT queries? 

● Difficult queries slow down the analysis a lot

Code size

● How does IR generation impact code size?

● Estimate “information content” of IR
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Implementations under analysis
KLEE

Source code to 

LLVM bitcode

Implemented in 

C++

No native execution

S2E

Binary to LLVM 

bitcode via QEMU

Implemented in 

C/C++

Binary translation 

through QEMU

Based on KLEE

angr

Binary to VEX IR 

(Valgrind project)

Implemented in 

Python

Binary translation 

through Unicorn

Qsym

No IR; execution of 

x86 machine code

Implemented in 

C++

Native execution 

via Intel Pin
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Setup
● Programs from DARPA Cyber Grand Challenge

○ Designed around a simple architecture (“DECREE”)

○ Source code available

○ Meant to be used as a test set for vulnerability detection (and exploit generation)

● Concolic execution

○ Follow the same fixed path in all engines

○ No bias from different exploration strategies

○ Path based on provided crashing inputs (“proofs of vulnerability”)

● Environment

○ Ubuntu 16.04, 24 GB of memory

○ 30 minutes per execution or solver run (whichever applies to the experiment)
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Challenges

● We had to patch all engines

○ Add support for program particularities (e.g., support mmap in KLEE)

○ Insert measurement probes

● Still, only 24 out of 131 programs work in all four engines 😞
○ Unsupported instructions (e.g., floating-point arithmetic)

○ Excessive memory or CPU time consumption

○ Others concur: e.g., see Qu and Robinson, as well as Xu et al.

● Results are not fully representative of any possible program to test

○ But: scientific progress requires evaluation and comparison!

○ Need a methodology for comparing symbolic execution engines

○ We can still identify trends
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Results: Code size
● Measured IR inflation rate

○ Ratio between number of machine-code 

instructions and number of IR instructions

● Added two extra data points

○ McSema: lifter from binaries to LLVM bitcode

○ angr on ARM: apply angr’s VEX translation to 

ARM machine code

● IR from source code is more concise

● S2E: problem with double translation?

○ Machine code → QEMU → LLVM bitcode

Inflation rate per IR generation mechanism

across 123 CGC programs and 106 coreutils binaries;

boxes contain 50% of the data points with the line marking the 

median, whiskers extend to 1.5 times the interquartile range, 

dots are outliers 14



Results: Execution speed
● Measured IR execution rate

○ Symbolically executed instructions per 

unit of time

○ Normalized by average inflation rate

● Qsym unsurprisingly fastest

● angr: slow because of Python

● KLEE and S2E: same basis, but S2E 

executes less expressive IR

● Absence of IR seems beneficial

Execution speed of symbolically executed instructions

across 24 CGC programs
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Example: Query complexity

16

(= (_ bv55 8)
   ((_ extract 7 0)
    ((_ zero_extend 24)
     (select data (_ bv3 32)))))

(= (_ bv0 64)
   (bvand
    (bvadd
     ;; 0xFFFFFFFFFFFFFFC9
     (_ bv18446744073709551561 64)
     ((_ zero_extend 56)
      ((_ extract 7 0)
       (bvor
        (bvand
         ((_ zero_extend 56)
          (select data (_ bv3 32)))
         ;; 0x00000000000000FF
         (_ bv255 64))
        ;; 0xFFFF88000AFDC000
        (_ bv18446612132498620416 64)))))
    (_ bv255 64)))

Queries generated for the C expression

data[3] == 55

by KLEE (below) and S2E (right)



Results: Query complexity
● Measured query rate

○ Number of solved queries per unit of 

time

● KLEE’s queries are simplest

○ Potentially because they are derived 

from high-level IR

● S2E gets close to KLEE

○ Internally based on KLEE

○ But different IR generation mechanism

● Is LLVM bitcode beneficial?

Query rates as a proxy for query complexity across

across 23 CGC programs 17



Source vs binary
● Large impact on IR size, thus 

possibly on execution speed

● SMT queries derived from source 

are easier

Research question 1
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Difference between IRs
● No observable difference 

between LLVM bitcode and VEX

● Fastest execution is achieved by 

using machine code directly

Research question 2
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What did we find?

For easy queries, generate IR from source code.

For fast execution, work on machine code directly.

Limitations: small data set, effects of IR and IR generation are hard to isolate.
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Symbolic execution with SymCC:
Don’t interpret, compile!



Compiling 
symbolic-execution capabilities 

into 
executables
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Current approaches  
(e.g., KLEE, S2E, angr)
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Interpreter approach
Target program (bitcode)

define i32 @is_double(i32, i32) {

  %3 = shl nsw i32 %1, 1

  %4 = icmp eq i32 %3, %0

  %5 = zext i1 %4 to i32

  ret i32 %5

}

Interpreter (e.g., KLEE, S2E, angr)

while (true) {

    auto instruction = getNextInstruction();

    switch (instruction.type) {

        // …

        case SHL: {

            auto result = instruction.operand(0) <<

                                  instruction.operand(1);

            auto resultExpr =

                buildLeftShift(instruction.operandExpr(0),

                                         instruction.operandExpr(1));

            setResult(result, resultExpr);

            break;

        }

    }

}

N 

times
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SymCC  
Compilation instead of 
interpretation
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SymCC: Overview
Target program (bitcode)

define i32 @is_double(i32, i32) {

  %3 = shl nsw i32 %1, 1

  %4 = icmp eq i32 %3, %0

  %5 = zext i1 %4 to i32

  ret i32 %5

}

Instrumented target (bitcode)

define i32 @is_double(i32, i32) {

  %3 = call i8* @_sym_get_parameter_expression(i8 0)

  %4 = call i8* @_sym_get_parameter_expression(i8 1)

  %5 = call i8* @_sym_build_integer(i64 1)

  %6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)

  %7 = call i8* @_sym_build_equal(i8* %6, i8* %3)

  %8 = call i8* @_sym_build_bool_to_bits(i8* %7)

  %9 = shl nsw i32 %1, 1

  %10 = icmp eq i32 %9, %0

  %11 = zext i1 %10 to i32

  call void @_sym_set_return_expression(i8* %8)

  ret i32 %11

}

once
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SymCC: Implementation
● Compiler pass and run-time library

● Pass inserts calls to the run-time library at compile time

→ Built on top of LLVM

→ Easily integrate with all LLVM-based compilers

→ Independent of CPU architecture and source language

● Run-time library builds up symbolic expressions and calls the solver

→ Two options for run-time library

→ “Simple backend”: wrapper around Z3, little optimization, good for debugging

→ “QSYM backend”: reuse expressions and solver infrastructure from QSYM

(but NOT the instrumentation!)
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QSYM is different
● Yun et al., USENIX Security 2018

● Based on dynamic binary instrumentation

→ Rewrites binaries at run time using Intel Pin

→ Inserts calls to functions that build symbolic 

expressions and interacts with a solver

● Strengths

→ No interpreter: higher performance than 

interpreted systems

→ Support for binaries

● But…

→ Rewritten program is less efficient than compiled 

programs

→ Binary level, i.e., need to implement symbolic 

handling for each x86 instruction

Target 

process

Analysis 

process

(QSYM)

attach 

via 

ptrace
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Recap

We compile symbolic-execution 

capabilities right into the binary.

● Most others interpret

● QSYM uses dynamic binary 

instrumentation
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Evaluation
Benchmark and real-world targets
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Benchmark: Execution Speed
Fully concrete
No symbolic input provided

Concolic
Input data is made symbolic
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Approach
After concolic execution, measure edge coverage 

of newly generated inputs with afl-showmap.

Visualization
● Compare paths found by only one system

● More intense color: more unique paths

● Blue for SymCC, red for KLEE/QSYM

Benchmark: Coverage

Comparison with KLEE (56 programs):

SymCC is better on 46 and worse on 10

Comparison with QSYM (116 programs):

SymCC is better on 47, worse on 40, and 

equal on 29
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Real-world targets: Setup

● Goal: show scalability to real-world software

● Popular open-source projects: OpenJPEG, libarchive, tcpdump

● Hybrid fuzzing: AFL and concolic execution with SymCC/QSYM

→ Same approach as Driller and QSYM

→ 2 AFL processes, 1 SymCC/QSYM (like in QSYM’s evaluation)

● Intel Xeon Platinum 8260 CPU with 2GB of RAM per core

● 24 hours, 30 iterations (→ roughly 17 CPU core months)

● Excluded KLEE: unsupported instructions in target programs
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Real-world targets: Results
● Higher coverage than QSYM

● Statistically significant coverage difference 

(Mann-Whitney-U, p < 0.0002)

● Found 2 CVEs in OpenJPEG

● Speed advantage correlates with 

coverage gain
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Conclusion
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Compilation makes symbolic execution more 
efficient
● SymCC compiles symbolic-execution capabilities into binaries
● Orders of magnitude faster than state of the art
● Significantly more code coverage per time, 2 CVEs

Needs source code
● Often the case that source is available
● Binary code (libraries) just executed concretely 

How to perform multipath exploration like Klee? 
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Thank you!
aurelien.francillon@eurecom.fr
sebastian.poeplau@eurecom.fr

https://github.com/eurecom-s3/symcc
(code, docs, evaluation details)
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