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Who Am I ?

Main Focus
Design privacy-preserving personal data management and analysis
systems and explore the resulting privacy-efficiency-quality tradeoffs

Main Tools
I Distribution : client-server architectures with untrusted

parties, completely distributed architectures.

I Sanitization models and mechanisms : perturbation that
satisfies differential privacy or variants

I Encryption mechanisms : block ciphers (e.g., symmetric
AES), homomorphic encryption (e.g., additively-homomorphic
Paillier), etc.

Leitmotiv: perturbation techniques as building blocks for
privacy-preserving algorithms.
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Why Using Differential Privacy as a Building Block ?

In general :

I Encryption alone : computation may be costly or may not
cope with churn when distributed, the final result may reveal
too much

I Differential privacy can allow to (for example) : switch to
cleartext while keeping sound protections (perturbation), limit
the leaks from the final result of encrypted functions

I It is interesting ! (security models, privacy budget
management, algorithms adaptation)

A specific illustration below : the PINED-RQ family [16, 17] (and
ongoing reviews).
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Outsourcing Private Data

I Substantial advances in outsourced data management
techniques but. . .

I Strong security concerns hamper the adoption of cloud
solutions for private data

I And naive encryption of the complete database is not a viable
solution
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Secure Range Query ?

I Goal : Answer to queries that involve numerical comparisons
with realistic performances

I Example query : SELECT * FROM students WHERE

grade≥3 AND grade≤4
I A basic primitive for various applications (e.g., transactions,

analytics)
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Objective

I Let a honest-but-curious cloud. . .

I Answer to selection range queries over encrypted personal
data . . .

I While providing differentially private guarantees. . .

I Together with realistic performances.
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Related Work in a Nutshell

I Approaches based on bucketization do not provide formal
privacy guarantees (e.g., [10, 12, 11])

I Approaches based on order-preserving encryption schemes are
vulnerable to statistical attacks (e.g., [3, 4])

I Approaches based on symmetric searchable encryption suffer
from high space and/or times requirements (e.g., [13, 7])
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Approach:

I Data provider : compute a
one-dimensional
differentially-private index
inspired from B+-Trees over the
records encrypted by any usual
secret key semantically-secure
encryption scheme (e.g., AES), and
send both to the cloud.

I Cloud : receive range queries
(cleartext) and answer them by
returning encrypted records based
on the differentially-private
(cleartext) index.

I Both : support updates ! (Inserts,
modifies, and deletes.)
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Basic Data Structures

I Dataset (private) : a relation D(A1, . . . ,Ad ). Considered to
be private.

I Queries (public) : non-aggregate single-dimensional range
queries over a single attribute Aq.

I Exact results (or relevant records) : set of records R in D
satisfying the query Q.

I Outsourced data structures (satisfy differential privacy) :

I Encrypted version of the dataset D (semantically secure
encryption scheme)

I Index I(Aq) over the queriable attribute of D, pointing to the
encrypted records r ∈ D.
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Quality

I Inherent loss of information due to the differentially private
perturbation

I Quantification of the quality we reach by recall and precision
measures

Definition (Recall and Precision)

Given a query Q, with an exact set of relevant records R in D,
while the set of records returned by the cloud is R̃, then the recall
r and precision p of R̃ are: r = |R ∩ R̃|/|R| and
p = |R ∩ R̃|/|R̃|.
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Original Differential Privacy Model

ε-differential privacy (from [8])

A random function f satisfies ε-differential privacy iff: For all D
and D′ differing in at most one record, and for any possible
output S of f, then it is true that:
Pr[f(D) = S] ≤ eε × Pr[f(D′) = S]

I f : an agregate query perturbed (originally)

I “For all D and D′”: all possible datasets

I “D and D′ differing in at most one record”: D is D′ with one
tuple more or one tuple less

I ε : the privacy parameter, public, common values: 0.01, 0.1,
ln 2, ln 3
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Laplace Mechanism

Given ε, adding to the output of a COUNT aggregate query a
random variable sampled from a Laplace distribution with mean 0
and scale factor 1/ε satisfies ε-differential privacy [9].

Figure: Laplace (0, 1/0.01)

14



Nice Properties

I Self-composability : composing the outputs of two
independant releases sanitized by differentially-private
function(s) satisfies differential privacy :
I Where εfinal =

∑
εi if input datasets are not disjoint

I Or εfinal = max εi otherwise

I No breach from post-processing : Any function applied to
a differentially-private input produces a differentially-private
output
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Computational Differential Privacy

I Original differential privacy provides information theoretic
guarantees. . .

I But when combined with a semantically secure encryption
scheme, the end-to-end guarantees become
computational !

Definition (εn-SIM-CDP privacy [14])

Randomized function fn provides εn-SIM-CDP if there exists a
function Fn that satisfies εn-differential-privacy and a polynomial
p(·), such that for every input dataset D, every probabilistic
polynomial time adversary A, every auxiliary background knowledge
ζ ∈ {0, 1}∗, and every sufficiently large n ∈ N, it holds that :

|Pr[An(fn(D, ζ)) = 1]− Pr[An(Fn(D, ζ)) = 1]| ≤ 1

p(n)
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PINED-RQ Security Guarantees

A probabilistic relaxation of εn-SIM-CDP :

Definition ((ε, δ)n-Probabilistic-SIM-CDP)

A randomized function fn is said to provide
(ε, δ)n-Probabilistic-SIM-CDP, if it provides εn-SIM-CDP [14] to
each individual with probability greater than or equal to δ, where
δ ∈]0, 1].
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Problem(s) I

PINED-RQ
Design the following functions while satisfying
(ε, δ)n-Probabilistic-SIM-CDP and achieving realistic performance
and quality levels :

1. Index creation (CREATE) : create the differentially private
data structures

2. Query execution : answer to range queries based on the
index

3. Index updates (INSERT, MOD/DEL) : maintain the index
against inserts, modifies, and deletes operations (will not be
presented here for time reasons).
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Problem(s) II

Extensions
I Rationalize the software architecture (FRESQUE):

streamline and parallelize the CREATION and INSERT

functions.
⇒ Support high ingestion rates (100k+ records per second in
our experiments).

I Diversify the kind of index (PARADOT): index the primary
key attribute (based on PINED-RQ augmented with bitmaps).
⇒ Support an infinite number of updates.
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Step 1 : Compute I(Aq) (B+-Trees + DP histograms)

Figure: Step 1 before
perturbation

Create the index I(Aq)

I I(Aq) is a balanced tree with a fixed
branching factor (see, e.g., [15] for
setting it)

I Each node is a bin, each level
represents a histogram over Aq

I Leaf nodes are unit-size bins and point
to encrypted records

I Perturb each bin based on the usual
Laplace mechanism and apply known
consistency constraints and privacy
budget distribution strategies [6, 15]
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Step 2 : Compute D I

Figure: Step 2 before encryption

Create the encrypted dataset D
I Main goal : consistency

between perturbed leaf
nodes and number of
encrypted records

I Positive noise : add
dummy records

I Negative noise : remove
records, put them in the
overflow array of the leaf

I Size of overflow arrays
(fixed) : computed based
on Laplace CDF s. t. noise
is lower with a given
probability (e.g., 99.99%)
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Step 2 : Compute D II

Figure: Step 2 after encryption
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Privacy Guarantees of CREATE

Theorem
The CREATE function, in charge of computing I(Aq), D, and the
overflow arrays satisfies (ε, δ)n-Probabilistic-SIM-CDP as defined in
Definition 3.

Proofs in the paper.
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Query Processing Strategy

Naive Query Processing

Given a range query Q :

1. Start at the root of the tree

2. Traverse the child of any node that has a non-negative
intersection with Q

3. If a leaf node has a positive count Q : return the records
pointed to by the corresponding node.

4. Otherwise : always return the overflow array (high recall
priority).

5. (On data consumers) filter out false positives

Experimental results actually show that this strategy is sufficient !
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Settings

I Environment : Java implementation, Windows 7 OS, i5-2320
3 GHz CPU, 8 GB RAM.

I Parameters : Branching factor is set to 16, total privacy
budget εtotal = 1, domain of Aq normalized to [0, 100], size of
overflow arrays with 99.99% confidence interval.

I Synthetic datasets : uniform or Zipfian with a skewness of
1, with 0.5 million records.

I Real datasets : Gowalla [5] (locations and times, 6, 442, 890
records, relatively uniform), and US Postal Employees [1],
USPS, dataset (394, 763 records after cleaning, highly
skewed).

I Queries : sample 1000 random queries inside each of the
following ranges : 1%, 5%, 10%, 25%, 50%, and 75% of the
entire domain.
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Quality (sample) I
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Figure: Recall (varying range size)
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Quality (sample) II
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28



Quality (sample) III
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Index Scan Timing
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30



Progress of the Talk

Introduction

Problem Definition

PINED-RQ

The FRESQUE Extension (Quick Overview)

Conclusion

31



Weaknesses of PINED-RQ

PINED-RQ generates bottlenecks

I Batch publishing
⇒ FRESQUE streams the incoming records to the cloud.

I Naive data structures
⇒ FRESQUE uses arrays extensively (constant-time accesses)

I Naive architecture
⇒ FRESQUE clearly defines the software modules of
PINED-RQ and parallelizes them on a shared-nothing
infrastructure.
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Focus on the Architecture of FRESQUE

Figure: The Architecture of FRESQUE
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Experimental Environment
I FRESQUE implemented in Java 1.8.0.
I Galactica platform, cluster of 17 nodes (Ubuntu 14.04.4 LTS)
I Datasets: NASA log [2] (1, 569, 898 records, five attributes,

reply byte indexed), Gowalla [5] (6, 442, 892 records, three
attributes, check-in time indexed).

I Incoming data rate: 200k records per second.
I PINED-RQ : fanout is 16, default ε is 1, δ is set to 99%.
I Results: average of ten experiments.

Table: Experimental environment

Component CPU (2.4 GHz) Memory (GB) Disk (GB)
Dispatcher 4 8 80
Merger 4 8 80
Checking node 4 8 80
Computing node 2 2 20
Data source 4 16 80
Cloud 16 64 160
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Ingestion Throughput

Figure: Ingestion throughput of FRESQUE
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Ingestion Throughput - Comparison I

Figure: Ingestion throughput of FRESQUE - Improvement over our
non-parallel version of PINED-RQ++ (≈ similar to PINED-RQ)
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Ingestion Throughput - Comparison II

Figure: Ingestion throughput degradation of FRESQUE - Comparison with
our previous versions
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Key Take-Aways

I The PINED-RQ family : differential privacy together with
encryption for efficient encrypted data querying

I Secure against a honest-but-curious cloud, where :
I Security model is the simulation-based flavor of

computational differential privacy [14]
I Differential privacy is satisfied probabilistically for

PINED-RQ and FRESQUE
I Cleartext queries are assumed to be innocuous

I Overall, experimental evaluations show :
I High recall and precision levels. Results depend on the size

of the range (the larger the better), and on data distribution
(high impact of the noise on the parts of the domain that
contain few data)

I Index scan time is realistic (much faster than related works).
I High ingestion throughput for FRESQUE (orders of

magnitude higher than related works).
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Thank you !
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